Numerical solutions to the parabolic wave equation are plagued by the curse of dimensionality coupled with the Nyquist criterion. As a remedy, a new range-dynamical low-rank split-step Fourier method is developed. The integration scheme scales sub-linearly with the number of classical degrees of freedom in the transverse directions. It is orders of magnitude faster than the classic full-rank split-step Fourier algorithm and saves copious amounts of storage space. This enables numerical solutions of the parabolic wave equation at higher frequencies and on larger domains, and simulations may be performed on laptops rather than high-performance computing clusters. Using a rank-adaptive scheme to optimize the low-rank equations further ensures the approximate solution is highly accurate and efficient. The methodology and algorithms are demonstrated on realistic high-resolution data-assimilative ocean fields in Massachusetts Bay for two three-dimensional acoustic configurations with different source locations and frequencies. The acoustic pressure, transmission loss, and phase solutions are analyzed in the two geometries with seamounts and canyons across and along Stellwagen Bank. The convergence with the rank of the subspace and the properties of the rank-adaptive scheme are demonstrated, and all results are successfully compared with those of the full-rank method when feasible.

1.
Absil
,
P.-A.
, and
Malick
,
J.
(
2012
). “
Projection-like retractions on matrix manifolds
,”
SIAM J. Optim.
22
(
1
),
135
158
.
2.
Absil
,
P.-A.
, and
Oseledets
,
I. V.
(
2015
). “
Low-rank retractions: A survey and new results
,”
Comput. Optim. Appl.
62
(
1
),
5
29
.
3.
Ali
,
W. H.
,
Bhabra
,
M. S.
,
Lermusiaux
,
P. F. J.
,
March
,
A.
,
Edwards
,
J. R.
,
Rimpau
,
K.
, and
Ryu
,
P.
(
2019
). “
Stochastic oceanographic-acoustic prediction and Bayesian inversion for wide area ocean floor mapping
,” in
OCEANS 2019 MTS/IEEE SEATTLE
, Seattle, WA (
IEEE
,
New York
), pp.
1
10
.
4.
Ali
,
W. H.
,
Charous
,
A.
,
Mirabito
,
C.
,
Haley
,
P. J.
, Jr.
, and
Lermusiaux
,
P. F. J.
(
2023
). “
MSEAS-ParEq for ocean-acoustic modeling around the globe
,” in
OCEANS 2023 IEEE/MTS U.S. Gulf Coast
, Biloxi, MS (
IEEE
,
New York
), pp.
1
10
.
5.
Ali
,
W. H.
, and
Lermusiaux
,
P. F. J.
(
2024a
). “
Dynamically orthogonal narrow-angle parabolic equations for stochastic underwater sound propagation. Part I: Theory and schemes
,”
J. Acoust. Soc. Am.
155
(
1
),
640
655
.
6.
Ali
,
W. H.
, and
Lermusiaux
,
P. F. J.
(
2024b
). “
Dynamically orthogonal narrow-angle parabolic equations for stochastic underwater sound propagation. Part II: Applications
,”
J. Acoust. Soc. Am.
155
(1),
656
672
.
7.
Berenger
,
J.-P.
(
1994
). “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
(
2
),
185
200
.
8.
Botseas
,
G.
,
Lee
,
D.
, and
King
,
D.
(
1987
). “
FOR3D: A computer model for solving the LSS three-dimensional wide angle wave equation
,” NUSC TR 7943, U.S. Naval Underwater Systems Center, New London, CT.
9.
Castor
,
K.
, and
Sturm
,
F.
(
2008
). “
Investigation of 3D acoustical effects using a multiprocessing parabolic equation based algorithm
,”
J. Comput. Acoust.
16
(
02
),
137
162
.
10.
Cervenỳ
,
V.
(
2001
).
Seismic Ray Theory
(
Cambridge University Press
,
Cambridge, UK
), Vol.
110
.
11.
Charous
,
A.
(
2023
). “
Dynamical reduced-order models for high-dimensional systems
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
12.
Charous
,
A.
, and
Lermusiaux
,
P. F. J.
(
2021
). “
Dynamically orthogonal differential equations for stochastic and deterministic reduced-order modeling of ocean acoustic wave propagation
,” in
OCEANS 2021, San Diego—Porto
, San Diego, CA (
IEEE
,
New York
), pp.
1
7
.
13.
Charous
,
A.
, and
Lermusiaux
,
P. F. J.
(
2023
). “
Dynamically orthogonal Runge–Kutta schemes with perturbative retractions for the dynamical low-rank approximation
,”
SIAM J. Sci. Comput.
45
(
2
),
A872
A897
.
14.
Charous
,
A.
, and
Lermusiaux
,
P. F. J.
(
2024
). “
Stable rank-adaptive dynamically orthogonal Runge–Kutta schemes
,”
SIAM J. Sci. Comput.
46
,
A529
–A560.
15.
Collins
,
M. D.
(
1993
). “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
(
4
),
1736
1742
.
16.
Collins
,
M. D.
,
Cederberg
,
R. J.
,
King
,
D. B.
, and
Chin-Bing
,
S. A.
(
1996
). “
Comparison of algorithms for solving parabolic wave equations
,”
J. Acoust. Soc. Am.
100
(
1
),
178
182
.
17.
Collins
,
M. D.
, and
Evans
,
R. B.
(
1992
). “
A two-way parabolic equation for acoustic backscattering in the ocean
,”
J. Acoust. Soc. Am.
91
(
3
),
1357
1368
.
18.
Collins
,
M. D.
, and
Siegmann
,
W. L.
(
2019
).
Parabolic Wave Equations with Applications
(
Springer
,
Berlin
).
19.
Cummings
,
J. A.
, and
Smedstad
,
O. M.
(
2013
).
Variational Data Assimilation for the Global Ocean
(
Springer
,
Berlin
), pp.
303
343
.
20.
Deleersnijder
,
E.
,
Legat
,
V.
, and
Lermusiaux
,
P. F. J.
(
2010
). “
Multi-scale modelling of coastal, shelf and global ocean dynamics
,”
Ocean Dyn.
60
(
6
),
1357
1359
.
21.
Deleersnijder
,
E.
, and
Lermusiaux
,
P. F. J.
(
2008
). “
Multi-scale modeling: Nested-grid and unstructured-mesh approaches
,”
Ocean Dyn.
58
(
5–6
),
335
336
.
22.
DiNapoli
,
F. R.
, and
Deavenport
,
R. L.
(
1980
). “
Theoretical and numerical Green's function field solution in a plane multilayered medium
,”
J. Acoust. Soc. Am.
67
(
1
),
92
105
.
23.
Duda
,
T. F.
(
2006
). “
Initial results from a Cartesian three-dimensional parabolic equation acoustical propagation code
,”
Technical Report WHOI-2006-14
, Woods Hole Oceanographic Institution, Woods Hole, MA.
24.
Duda
,
T. F.
,
Lin
,
Y.-T.
,
Newhall
,
A. E.
,
Helfrich
,
K. R.
,
Lynch
,
J. F.
,
Zhang
,
W. G.
,
Lermusiaux
,
P. F. J.
, and
Wilkin
,
J.
(
2019
). “
Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction
,”
J. Acoust. Soc. Am.
146
(
3
),
1996
2015
.
25.
Duda
,
T. F.
,
Lin
,
Y.-T.
,
Newhall
,
A. E.
,
Helfrich
,
K. R.
,
Zhang
,
W. G.
,
Badiey
,
M.
,
Lermusiaux
,
P. F. J.
,
Colosi
,
J. A.
, and
Lynch
,
J. F.
(
2014
). “
The ‘Integrated Ocean Dynamics and Acoustics’ (IODA) hybrid modeling effort
,” in
Proceedings of the International Conference on Underwater Acoustics—2014 (UA2014)
, pp.
621
628
, available at https://scholar.google.com/scholar?cluster=5677702977423602800&hl=en&as_sdt=0,22.
26.
Egbert
,
G. D.
, and
Erofeeva
,
S. Y.
(
2002
). “
Efficient inverse modeling of barotropic ocean tides
,”
J. Atmos. Ocean. Technol.
19
(
2
),
183
204
.
27.
Egbert
,
G. D.
, and
Erofeeva
,
S. Y.
(
2024
). OTIS: OSU Tidal Inversion, https://www.tpxo.net/otis.
28.
Evans
,
R. B.
(
1983
). “
A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom
,”
J. Acoust. Soc. Am.
74
(
1
),
188
195
.
29.
Ewing
,
W. M.
,
Jardetzky
,
W. S.
,
Press
,
F.
, and
Beiser
,
A.
(
1957
). “
Elastic waves in layered media
,”
Phys. Today
10
(
12
),
27
28
.
30.
Feppon
,
F.
, and
Lermusiaux
,
P. F. J.
(
2018a
). “
Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport
,”
SIAM Rev.
60
(
3
),
595
625
.
31.
Feppon
,
F.
, and
Lermusiaux
,
P. F. J.
(
2018b
). “
A geometric approach to dynamical model-order reduction
,”
SIAM J. Matrix Anal. Appl.
39
(
1
),
510
538
.
32.
Feppon
,
F.
, and
Lermusiaux
,
P. F. J.
(
2019
). “
The extrinsic geometry of dynamical systems tracking nonlinear matrix projections
,”
SIAM J. Matrix Anal. Appl.
40
(
2
),
814
844
.
33.
Haley
,
P. J.
, Jr.
,
Agarwal
,
A.
, and
Lermusiaux
,
P. F. J.
(
2015
). “
Optimizing velocities and transports for complex coastal regions and archipelagos
,”
Ocean Model.
89
,
1
28
.
34.
Haley
,
P. J.
, Jr.
,
Gupta
,
A.
,
Mirabito
,
C.
, and
Lermusiaux
,
P. F. J.
(
2020
). “
Towards Bayesian ocean physical-biogeochemical-acidification prediction and learning systems for Massachusetts Bay
,” in
Global Oceans 2020: Singapore–U.S. Gulf Coast
, Biloxi, MS (
IEEE
,
New York
), pp.
1
9
.
35.
Haley
,
P. J.
, Jr.
, and
Lermusiaux
,
P. F. J.
(
2010
). “
Multiscale two-way embedding schemes for free-surface primitive equations in the ‘Multidisciplinary Simulation, Estimation and Assimilation System
,’ ”
Ocean Dyn.
60
(
6
),
1497
1537
.
36.
Halko
,
N.
,
Martinsson
,
P.-G.
, and
Tropp
,
J. A.
(
2011
). “
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
,”
SIAM Rev.
53
(
2
),
217
288
.
37.
Halpern
,
L.
, and
Trefethen
,
L. N.
(
1988
). “
Wide-angle one-way wave equations
,”
J. Acoust. Soc. Am.
84
(
4
),
1397
1404
.
38.
Hardin
,
R.
(
1973
). “
Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations
,”
SIAM Rev.
15
,
423
.
39.
Heaney
,
K. D.
, and
Campbell
,
R. L.
(
2016
). “
Three-dimensional parabolic equation modeling of mesoscale eddy deflection
,”
J. Acoust. Soc. Am.
139
(
2
),
918
926
.
40.
HYCOM Consortium
(
2023
). “
HYbrid Coordinate Ocean Model (HYCOM)
,” https://hycom.org (Last viewed April 9, 2019).
41.
Ide
,
J. M.
,
Post
,
R. F.
, and
Fry
,
W. J.
(
1947
). “
The propagation of underwater sound at low frequencies as a function of the acoustic properties of the bottom
,”
J. Acoust. Soc. Am.
19
(
1
),
283
.
42.
Jardetzky
,
W. S.
(
1953
). “
Period equation for an n-layered halfspace and some related questions
,”
Technical Report on Seismology 29
, Lamont Geological Observatory of Columbia University, Palisades, NY.
43.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
,
Schmidt
,
H.
, and
Tolstoy
,
A.
(
2011
).
Computational Ocean Acoustics
(
Springer
,
Berlin
), Vol.
794
.
44.
Koch
,
O.
, and
Lubich
,
C.
(
2007
). “
Dynamical low-rank approximation
,”
SIAM J. Matrix Anal. Appl.
29
(
2
),
434
454
.
45.
Kutschale
,
H. W.
(
1973
). “
Rapid Computation by Wave Theory of Propagation Loss in the Arctic Ocean
,”
CU-8-73, Technical Report 8
, Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY.
46.
Lee
,
D.
,
Schultz
,
M. H.
, and
Siegmann
,
W.
(
1995
).
Numerical Ocean Acoustic Propagation in Three Dimensions
(
World Scientific
,
Singapore
).
47.
Leontovich
,
M. A.
, and
Fock
,
V. A.
(
1946
). “
Solution of the problem of propagation of electromagnetic waves along the earth's surface by the method of parabolic equation
,”
J. Phys. USSR
10
(
1
),
13
23
.
48.
Lermusiaux
,
P. F. J.
(
2001
). “
Evolving the subspace of the three-dimensional multiscale ocean variability: Massachusetts Bay
,”
J. Mar. Syst.
29
(
1
),
385
422
.
49.
Lermusiaux
,
P. F. J.
(
2006
). “
Uncertainty estimation and prediction for interdisciplinary ocean dynamics
,”
J. Comput. Phys.
217
(
1
),
176
199
.
50.
Lermusiaux
,
P. F. J.
(
2007
). “
Adaptive modeling, adaptive data assimilation and adaptive sampling
,”
Phys. D: Nonlinear Phenom.
230
(
1
),
172
196
.
51.
Lermusiaux
,
P. F. J.
, and
Chiu
,
C.-S.
(
2002
). “
Four-dimensional data assimilation for coupled physical-acoustical fields
,” in
Acoustic Variability, 2002
, edited by
N. G.
Pace
and
F. B.
Jensen
(
Kluwer Academic Press
,
Amsterdam
), pp.
417
424
.
52.
Lermusiaux
,
P. F. J.
,
Chiu
,
C.-S.
,
Gawarkiewicz
,
G. G.
,
Abbot
,
P.
,
Robinson
,
A. R.
,
Miller
,
R. N.
,
Haley
,
P. J.
, Jr.
,
Leslie
,
W. G.
,
Majumdar
,
S. J.
,
Pang
,
A.
, and
Lekien
,
F.
(
2006
). “
Quantifying uncertainties in ocean predictions
,”
Oceanography
19
(
1
),
90
105
.
53.
Lermusiaux
,
P. F. J.
,
Chiu
,
C.-S.
, and
Robinson
,
A. R.
(
2002a
). “
Modeling uncertainties in the prediction of the acoustic wavefield in a shelfbreak environment
,” in
Proceedings of the 5th International Conference on Theoretical and Computational Acoustics
, Beijing China, edited by
E.-C.
Shang
,
Q.
Li
, and
T. F.
Gao
(
World Scientific Publishing Co
.,
Singapore
), pp.
191
200
.
54.
Lermusiaux
,
P. F. J.
,
Haley
,
P. J.
, Jr.
,
Mirabito
,
C.
,
Ali
,
W. H.
,
Bhabra
,
M.
,
Abbot
,
P.
,
Chiu
,
C.-S.
, and
Emerson
,
C.
(
2020a
). “
Multi-resolution probabilistic ocean physics-acoustic modeling: Validation in the New Jersey continental shelf
,” in
Global Oceans 2020: Singapore–U.S. Gulf Coast
, Biloxi, MS (
IEEE
,
New York
), pp.
1
9
.
55.
Lermusiaux
,
P. F. J.
,
Mirabito
,
C.
,
Haley
,
P. J.
, Jr.
,
Ali
,
W. H.
,
Gupta
,
A.
,
Jana
,
S.
,
Dorfman
,
E.
,
Laferriere
,
A.
,
Kofford
,
A.
,
Shepard
,
G.
,
Goldsmith
,
M.
,
Heaney
,
K.
,
Coelho
,
E.
,
Boyle
,
J.
,
Murray
,
J.
,
Freitag
,
L.
, and
Morozov
,
A.
(
2020b
). “
Real-time probabilistic coupled ocean physics-acoustics forecasting and data assimilation for underwater GPS
,” in
Global Oceans 2020: Singapore–U.S. Gulf Coast
, Biloxi, MS (
IEEE
,
New York
), pp.
1
9
.
56.
Lermusiaux
,
P. F. J.
,
Robinson
,
A. R.
,
Haley
,
P. J.
, and
Leslie
,
W. G.
(
2002b
). “
Advanced interdisciplinary data assimilation: Filtering and smoothing via error subspace statistical estimation
,” in
OCEANS ‘02 MTS/IEEE
, Biloxi, MS (
IEEE
,
New York
), pp.
795
802
.
57.
Lermusiaux
,
P. F. J.
,
Xu
,
J.
,
Chen
,
C.-F.
,
Jan
,
S.
,
Chiu
,
L.
, and
Yang
,
Y.-J.
(
2010
). “
Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities
,”
IEEE J. Ocean. Eng.
35
(
4
),
895
916
.
58.
Lichte
,
H.
(
1919
). “
On the influence of horizontal temperature stratification of seawater on the range of underwater sound signals
,”
Physikalische Z.
(
17
),
385
389
.
59.
Lin
,
Y.-T.
(
2019
). “
Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation
,”
J. Acoust. Soc. Am.
146
(
3
),
2058
2067
.
60.
Lin
,
Y.-T.
,
Duda
,
T. F.
, and
Newhall
,
A. E.
(
2013
). “
Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method
,”
J. Comput. Acoust.
21
(
1
),
1250018
.
61.
Lin
,
Y.-T.
,
Porter
,
M. B.
,
Sturm
,
F.
,
Isakson
,
M. J.
, and
Chiu
,
C.-S.
(
2019
). “
Introduction to the special issue on three-dimensional underwater acoustics
,”
J. Acoust. Soc. Am.
146
(
3
),
1855
1857
.
62.
Logutov
,
O. G.
, and
Lermusiaux
,
P. F. J.
(
2008
). “
Inverse barotropic tidal estimation for regional ocean applications
,”
Ocean Model.
25
(
1–2
),
17
34
.
63.
Lu
,
P.
, and
Lermusiaux
,
P. F. J.
(
2021
). “
Bayesian learning of stochastic dynamical models
,”
Phys. D: Nonlinear Phenom.
427
,
133003
.
64.
McLachlan
,
R. I.
, and
Quispel
,
G. R. W.
(
2002
). “
Splitting methods
,”
Acta Numerica
11
,
341
434
.
65.
National Centers for Environmental Prediction (NCEP)
(
2023
). “The North American Mesoscale forecast system (NAM),” https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale (Last viewed July 20, 2023).
66.
National Data Buoy Center (NDBC)
(
2019
). “National Data Buoy Center,” https://www.ndbc.noaa.gov/ (Last viewed 2023).
67.
National Marine Fisheries Service
(
2019
). “New England/Mid-Atlantic: Science,” https://www.nefsc.noaa.gov/HydroAtlas/ (Last viewed 2023).
68.
Oliveira
,
T. C.
,
Lin
,
Y.-T.
, and
Porter
,
M. B.
(
2021
). “
Underwater sound propagation modeling in a complex shallow water environment
,”
Front. Mar. Sci.
8
,
751327
.
69.
Orszag
,
S. A.
(
1971
). “
On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components
,”
J. Atmos. Sci.
28
(
6
),
1074
1074
.
70.
Pekeris
,
C. L.
(
1948
). “
Theory of propagation of explosive sound in shallow water
,” in Memoir – Geological Society of America (
Geological Society of America
,
Boulder, CO
), available at https://pubs.geoscienceworld.org/georef/record/6/4290833/Theory-of-propagation-of-explosive-sound-in.
71.
Pierce
,
A. D.
(
1965
). “
Extension of the method of normal modes to sound propagation in an almost-stratified medium
,”
J. Acoust. Soc. Am.
37
(
1
),
19
27
.
72.
Robinson
,
A. R.
, and
Lermusiaux
,
P. F. J.
(
2004
). “
Prediction systems with data assimilation for coupled ocean science and ocean acoustics
,” in
Proceedings of the Sixth International Conference on Theoretical and Computational Acoustics
, Honolulu, HI, edited by
A.
Tolstoy
(
World Scientific Publishing
,
Singapore
), pp.
325
342
.
73.
Sapsis
,
T. P.
, and
Lermusiaux
,
P. F. J.
(
2009
). “
Dynamically orthogonal field equations for continuous stochastic dynamical systems
,”
Phys. D: Nonlinear Phenom.
238
(
23–24
),
2347
2360
.
74.
Šimša
,
J.
(
1992
). “
The best l2-approximation by finite sums of functions with separable variables
,”
Aeq. Math.
43
(
2-3
),
248
263
.
75.
Strang
,
G.
(
1968
). “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
(
3
),
506
517
.
76.
Tappert
,
F. D.
(
1977
). “
The parabolic approximation method
,” in
Wave Propagation and Underwater Acoustics
, edited by
J. B.
Keller
and
J. S.
Papadakis
(
Springer-Verlag
,
Berlin
), pp.
224
287
.
77.
Trefethen
,
L. N.
, and
Bau
,
D.,
III.
(
1997
).
Numerical Linear Algebra
(
SIAM
,
Philadelphia
).
78.
Twomey
,
E. R.
, and
Signell
,
R. P.
(
2013
). “
Construction of a 3-arcsecond digital elevation model for the Gulf of Maine
,”
Open-File Report 2011-1127
, U.S. Geological Survey, Reston, VA.
79.
Ueckermann
,
M. P.
(
2014
). “
High order hybrid discontinuous Galerkin regional ocean modeling
,” Ph.D. Thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
80.
Ueckermann
,
M. P.
, and
Lermusiaux
,
P. F. J.
(
2016
). “
Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations
,”
J. Comput. Phys.
306
,
390
421
.
81.
Ueckermann
,
M. P.
,
Lermusiaux
,
P. F. J.
, and
Sapsis
,
T. P.
(
2013
). “
Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows
,”
J. Comput. Phys.
233
,
272
294
.
82.
Williams
,
A.
(
1970
). “
Normal-mode methods in propagation of underwater sound
,” in
Underwater Acoustics
, edited by
R. W. B.
Stephens
(
Wiley-Interscience
,
London
), pp.
23
56
.
83.
Xu
,
C.
, and
Tang
,
J.
(
2019
). “
A propagation matrix method for the solution of the parabolic equation in ocean acoustics
,”
J. Acoust. Soc. Am.
146
(
6
),
EL464
EL469
.
You do not currently have access to this content.