An analytical model is presented for approximate prediction of the waveform and the sound level spectrum of blast waves generated by explosives and firearms. The model is based on numerical results for spherical blast waves, with overpressures between 10 kPa and 100 MPa, and a nonlinear propagation theory for blast waves. The matching of the numerical results and the nonlinear propagation theory is investigated, and compared with results from the literature and results of calculations with a nonlinear propagation model. The analytical model presented here assumes a Friedlander waveform, from which formulas are derived for the 1/3-octave band spectrum of the sound exposure level. The formulas take into account the nonlinear effect of pulse broadening, and the corresponding frequency shift. For firearms, the muzzle blast levels vary in general with the emission direction, and the model takes into account an empirical directivity correction. Apart from the directivity correction, the model has no empirical parameters. The waveform and the spectrum follow directly from the explosion energy or the explosive charge mass. Model predictions are in good agreement with measurement results of explosives and firearms, with the explosive charge mass ranging from 0.4 g to 4 kg TNT.

1.
H. L.
Brode
, “
Numerical solutions of spherical blast waves
,”
J. Appl. Phys.
26
,
766
775
(
1955
).
2.
H. L.
Brode
, “
Blast wave from a spherical charge
,”
Phys. Fluids
2
,
217
229
(
1959
).
3.
A. D.
Pierce
,
Acoustics. An Introduction to Its Physical Principles and Applications
(
AIP
,
New York
,
1991
), Chap. 11.
4.
F. G.
Friedlander
, “
The diffraction of sound pulses. I. Diffraction by a semi-infinite plane
,”
Proc. R. Soc. London A
186
,
322
344
(
1946
).
5.
C. E.
Needham
,
Blast Waves
(
Springer
,
Berlin
,
2010
).
6.
I.
Sochet
,
D.
Gardebas
,
S.
Calderara
,
Y.
Marchal
, and
B.
Longuet
, “
Blast wave parameters for spherical explosives detonation in free air
,”
Open J. Safe. Sci. Technol.
01
,
31
42
(
2011
).
7.
R. D.
Ford
,
D. J.
Saunders
, and
G.
Kerry
, “
The acoustics pressure waveform from small unconfined charges of plastic explosives
,”
J. Acoust. Soc. Am.
94
,
408
417
(
1993
).
8.
B. E.
McDonald
and
W. A.
Kuperman
, “
Time domain formulation for pulse propagation including nonlinear behaviour at a caustic
,”
J. Acoust. Soc. Am.
81
,
1406
1417
(
1987
).
9.
G. F.
Kinney
and
K. J.
Graham
,
Explosive Shocks in Air
(
Springer
,
New York
,
1985
).
10.
E. M.
Salomons
,
F. J. M.
van der Eerden
, and
F. H. A.
van den Berg
, “
Model calculations and measurements of shooting sound in practical situations
,”
J. Acoust. Soc. Am.
155
,
1162
1181
(
2024
).
11.
A.
Elbeih
,
A. K.
Hussein
,
T.
Elshenawy
,
S.
Zeman
,
S. M.
Hammad
,
A.
Baraka
,
M. A.
Elsayed
,
M.
Gobara
, and
H.
Tantawy
, “
Enhancing the explosive characteristics of a Semtex explosive by involving admixtures of BCHMX and HMX
,”
Defence Technol.
16
,
487
492
(
2020
).
12.
M. D.
Goel
, “
Blast: Characteristics, loading and computation—An overview
,” in
Advances in Structural Engineering
, edited by
V.
Matsagar
(
Springer
,
New Delhi
,
2015
).
13.
D.
Bogosian
,
M.
Yokota
, and
S. E.
Rigby
, “
TNT equivalence of C-4 and PE4: A review of traditional sources and recent data
,” in
Proceedings of the 24th Military Aspects of Blast and Shock. 24th Military Aspects of Blast and Shock
Halifax, Nova Scotia, Canada
(19–23 September
2016
), https://core.ac.uk/download/pdf/46565404.pdf (Last viewed September 5, 2024).
14.
R.
Jeremic
and
Z.
Bajic
, “
An approach to determining the TNT equivalent of high explosives
,”
Sci.-Tech. Rev.
LVI
,
58
61
(
2006
), available at www.vti.mod.gov.rs/ntp/rad2006/1-06/jere/jere.pdf (Last viewed September 5, 2024).
15.
Army Research Laboratory, “Interior Ballistics of guns,” U.S. Army, AMCP 706-150, Engineering Design Handbook (
1965
), https://apps.dtic.mil/sti/pdfs/AD0462060.pdf (Last viewed September 5, 2024).
16.
T.
Xin
,
G.
Yang
,
L.
Wang
, and
Q.
Sun
, “
Numerical calculation and uncertain optimization of energy conversion in interior ballistics stage
,”
Energies
13
,
5824
(
2020
).
17.
R. T.
Miner
, “
Computational interior ballistic modeling
,”
thesis
,
University of New Mexico
,
Albuquerque, NM
(
2012
), https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1067&context=me_etds (Last viewed September 5, 2024).
18.
E. M.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer
,
Dordrecht
,
2001
).
19.
K.
Attenborough
and
T.
Van Renterghem
,
Predicting Outdoor Sound
(
CRC Press
,
Abingdon, UK
,
2021
).
20.
ISO 9613-2 ISO 9613-2
, “Acoustics—Attenuation of sound during propagation outdoors—Part 2: General method of calculation” (
International Organization for Standardization
,
Geneva, Switzerland
,
1996
), https://www.iso.org/standard/20649.html (Last viewed September 5, 2024).
21.
J. M.
Wunderli
, “
Modelling the source strength of explosions under consideration of the ground influence
,”
Acta Acust. united Acust.
90
,
690
701
(
2004
), available at https://www.ingentaconnect.com/.
22.
ISO/CD 17201-2:2006
, “Acoustics—Noise from shooting ranges—Part 2: Estimation of muzzle blast and projectile sound by calculation” (
International Organization for Standardization
,
Geneva, Switzerland
,
2023
), https://www.iso.org/standard/30577.html (Last viewed September 5, 2024).
23.
M.
Kandula
and
R.
Freeman
, “
On the propagation and interaction of spherical blast waves
,” in
37th AIAA Fluid Dynamics Conference and Exhibit
,
Miami, FL
(25–28 June,
2007
), https://ntrs.nasa.gov/api/citations/20130011523/downloads/20130011523.pdf (Last viewed September 5, 2024).
24.
Z.
Xue
,
S.
Li
,
C.
Xin
,
L.
Shi
, and
H.
Wu
, “
Modeling of the whole process of shock wave overpressure of free-field air explosion
,”
Defence Technol.
15
,
815
820
(
2019
).
25.
K. S.
Fansler
, “
Description of gun muzzle blast by modified ideal scaling models
,”
ARL Report No. TR-1434
(
1997
), https://www.researchgate.net/publication/265349089_Description_of_Gun_Muzzle_Blast_by_Modified_Ideal_Scaling_Models (Last viewed September 5, 2024).
26.
G.
Billot
,
B. G.
Marinus
,
K.
Harri
, and
F.
Moiny
, “
Evolution of acoustic nonlinearity in outdoor blast propagation from firearms: On the persistence on nonlinear behavior
,”
J. Acoust. Soc. Am.
155
,
1021
1035
(
2024
).
27.
E. M.
Salomons
, “
A coherent line source in a turbulent atmosphere
,”
J. Acoust. Soc. Am.
105
,
652
657
(
1999
).
28.
M.
Wunderli
,
R.
Pieren
, and
K.
Heutschi
, “
The Swiss shooting sound calculation model sonARMS
,”
Noise Control Eng.
60
,
2024
2035
(
2012
).
29.
R.
Maher
and
T.
Routh
, “
Advancing forensic analysis of gunshot acoustics
,” in
AES 139th Convention
,
New York
(
2015
), https://www.montana.edu/rmaher/publications/maher_aes_1015_9471.pdf (Last viewed September 5, 2024).
30.
R. C.
Maher
and
S. R.
Shaw
, “
Directional aspects of forensic gunshot recordings
,” in
Proceedings of the Audio Engineering Society 39th Conference, Audio Forensics—Practices and Challenges
,
Hillerød, Denmark
(
2010
), pp.
1
6
, https://www.researchgate.net/profile/Robert-Maher-2 (Last viewed September 5, 2024).
31.
P. D.
Schomer
,
L. M.
Little
, and
A. B.
Hunt
, “
Acoustic directivity patterns for army weapons
,”
CERL report N-60
(
1979
), https://apps.dtic.mil/sti/tr/pdf/ADA066223.pdf (Last viewed September 5, 2024).
32.
L.
Pater
and
J. W.
Shea
, “
Techniques for reducing gun blast noise levels: An experimental study
,” Naval Surface Weapon Center, TR 81-120 (
1981
), https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b27f23343aa480cedd18a6b8051caaf4ac876e41 (Last viewed September 5, 2024).
33.
D. L.
Cler
,
N.
Chevaugeon
,
M. S.
Shepherd
, and
J. E.
Flaherty
, “
CFD application to gun muzzle blast—A validation case study
,” in
41st AIAA Aerospace Science Meeting and Exhibit, AIAA
,
Reno, Nevada
(
2003
), https://hal.science/hal-03939856/document (Last viewed September 5, 2024).
34.
E. M.
Salomons
,
D.
Kaptein
,
J.
van ‘t Hof
, and
J. D.
van der Toorn
, “
Geluidemissiespectra van vuurwapens” (“Sound emission spectra of firearms”)
, TNO Report No. TPD-HAG-RPT-94-0002 (
2008
); the sound emission spectra (source SEL spectra) are available at https://www.rivm.nl/geluid/rekenmodellen-en-tools/buitenschietbanen (Last viewed September 5, 2024); a description of the spectra (in Dutch) is available at https://wetten.overheid.nl/BWBR0045528/2024-01-01#BijlageXVIIIc (Last viewed September 5, 2024).
You do not currently have access to this content.