Aiming to address the significant external noise produced by helicopter rotors, an integrated process based on acoustic modes has been developed for predicting the global noise footprint. The proposed method has the advantages of global prediction, analysis, and low computational costs. The key steps involve constructing an acoustic modal database and efficient prediction of noise footprint. First, the global noise model is utilized to map the time-domain sound pressure to amplitudes and coefficients in the acoustic modal domain. Acoustic mode coefficients representing various flight states are systematically cataloged in the database. Subsequently, the coefficients are extracted based on the characteristic parameters of trajectory elements, allowing for the evaluation of noise radiation in the acoustic modal domain. To investigate the impact of descent angle and advance ratio on the noise footprint, a simulation study is conducted in the forward and approach flight with an AS350 helicopter. Results indicated that, for a region with 1800 observers, the computational time of the developed approach requires only one-fifth of the time compared to the traditional Rotorcraft Noise Model method. This remarkable reduction in computation time, along with the global predictive capability, supports the practicality of efficient noise footprint assessment in both military and civilian contexts.

1.
B.
Edwards
,
C.
Cox
, and
F.
Worth
, “
Revolutionary concepts for helicopter noise reduction—S.I.L.E.N.T. program
,”
Contract
NASAICR-2002-211650 (
2002
).
2.
A.
Le Pape
and
P.
Beaumier
, “
Numerical optimization of helicopter rotor aerodynamic performance in hover
,”
Aerosp. Sci. Technol.
9
,
191
201
(
2005
).
3.
B. G.
van der Wall
,
C.
Kessler
,
Y.
Delrieux
,
P.
Beaumier
,
M.
Gervais
,
J.-F.
Hirsch
,
K.
Pengel
, and
P.
Crozier
, “
From aeroacoustics basic research to a modern low-noise rotor blade
,”
J. Am. Helicopter Soc.
62
,
1
16
(
2017
).
4.
P. P.
Friedmann
, “
On-blade control of rotor vibration, noise, and performance: Just around the corner? The 33rd Alexander Nikolsky honorary lecture
,”
J. Am. Helicopter Soc.
59
,
1
37
(
2014
).
5.
R. D.
Janaki Ram
,
B. W.
Sim
,
C.
Kitaplioglu
, and
F. K.
Straub
, “
Blade-vortex interaction noise characteristics of a full-scale active flap rotor
,” in
American Helicopter Society 65th Anual Forum
, Grapevine, TX (May 27–29, 2009) (
2009
), pp.
1
21
, http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA529297.
6.
D. A.
Conner
,
C. L.
Burley
, and
C. D.
Smith
, “
Flight acoustic testing and data acquisition for the rotor noise model (RNM)
,” in
62nd Annual Forum of the American Helicopter Society
, Phoenix, AZ (May 9–11, 2006) (
2006
), pp.
1
17
.
7.
T.
Tsuchiya
,
H.
Ikaida
,
H.
Ishii
,
H.
Gomi
, and
Y.
Okuno
, “
Real-time trajectory optimization for noise abatement of helicopter landings
,”
J. Mech. Syst. Transp. Logist.
4
,
95
110
(
2011
).
8.
E.
Greenwood
, “
Dynamic replanning of low noise rotorcraft operations
,” in
Vertical Flight Society 75th Annual Forum,
Philadelphia, PA (May 13–16, 2019) (2019).
9.
S.
Hartjes
and
H. G.
Visser
, “
Optimal control approach to helicopter noise abatement trajectories in nonstandard atmospheric conditions
,”
J. Aircr.
56
,
43
52
(
2019
).
10.
F.
Farassat
, “
Linear acoustic formulas for calculation of rotating blade noise
,”
AIAA J.
19
,
1122
1130
(
1981
).
11.
G. A.
Brès
,
K. S.
Brentner
,
G.
Perez
, and
H. E.
Jones
, “
Maneuvering rotorcraft noise prediction
,”
J. Sound Vib.
275
,
719
738
(
2004
).
12.
D. B.
Hanson
, “
Near-field frequency-domain theory for propeller noise
,”
AIAA J.
23
,
499
504
(
1985
).
13.
K. A.
Pascioni
,
E.
Greenwood
,
M. E.
Watts
,
C. D.
Smith
, and
J. H.
Stephenson
, “
Medium-sized helicopter noise abatement flight test
,” in VFS (Vertical Flight Society) International 76th Annual Forum & Technology Display, Virginia Beach, VA (October 6–8, 2020) (2020).
14.
D. A.
Conner
and
J. A.
Page
, “
A tool for low noise procedures design and community noise impact assessment: The Rotorcraft noise model (RNM)
,”
Heli Jpn.
1
11
(
2002
).
15.
F.
Wang
,
G.
Xu
, and
Y.
Shi
, “
Efficient prediction of ground noise from helicopters and parametric studies based on acoustic mapping
,”
Chin. J. Aeronaut.
31
,
273
284
(
2018
).
16.
S.
Vouros
,
I.
Goulos
, and
V.
Pachidis
, “
Integrated methodology for the prediction of helicopter rotor noise at mission level
,”
Aerosp. Sci. Technol.
89
,
136
149
(
2019
).
17.
ICCAIA (Snecma, Airbus Helicopters, Sikorsky Aircraft, Bell Helicopter, AgustaWestland, Turbomeca, Marenco Swisshelicopter), Research Centers (NASA, DLR, ONERA, JAXA)
, Helicopter Noise Reduction Technology Status Report (April 21,
2015
), p.
56
, https://www.icao.int/environmental-protection/Documents/Helicopter_Noise_Reduction_Technology_Status_Report_April_2015.pdf (Last viewed September 4, 2024).
18.
J. W.
Lim
and
R. C.
Strawn
, “
Prediction of HART II rotor BVI loading and wake system using CFD/CSD loose coupling
,” in
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
(January 8–11,
2007
), AIAA 2007-1281.
19.
T.
Su
,
Y.
Lu
,
J.
Ma
, and
S.
Guan
, “
Aerodynamic characteristics analysis of electrically controlled rotor based on viscous vortex particle method
,”
Aerosp. Sci. Technol.
97
,
105645
(
2020
).
20.
A.
Bagai
,
Contributions to the Mathematical Modeling of Rotor Flow-Fields Using a Pseudo-Implicit Free-Wake Analysis
(
University of Maryland
,
College Park, MD
,
1995
).
21.
M. J.
Lucas
and
M. A.
Marcolini
, “
Rotorcraft noise model
,”
J. Acoust. Soc. Am.
101
(
5
),
3188
(
1997
).
22.
K.
Page
and
J. A.
Plotkin
, “
Acoustic repropagation technique version 2 (ART2)
” (
2001
).
23.
F. H.
Schmitz
,
G.
Gopalan
, and
B. W.-C.
Sim
, “
Flight-path management/control methodology to reduce helicopter blade-vortex interaction noise
,”
J. Aircr.
39
,
193
205
(
2002
).
24.
E.
Greenwood
and
R.
Rau
, “
A maneuvering flight noise model for helicopter mission planning
,”
J. Am. Helicopter Soc.
65
,
1
10
(
2020
).
25.
E.
Greenwood
, “
Helicopter flight procedures for community noise reduction
,” in
American Helicopter Society 73rd Annual Forum,
Fort Worth, TX (May 2017), pp.
1
14
.
26.
F.
Yunus
,
D.
Casalino
,
F.
Avallone
, and
D.
Ragni
, “
Toward inclusion of atmospheric effects in the aircraft community noise predictions
,”
J. Acoust. Soc. Am.
150
(
2
),
759
768
(
2021
).
27.
X.
Xu
,
Y.
Lu
,
J.
Ma
, and
M.
Shao
, “
A global rotor noise control method based on near-field acoustic holography and sound field reproduction
,”
Aerosp. Sci. Technol.
124
,
107549
(
2022
).
28.
M.
Gennaretti
,
J.
Serafini
,
G.
Bernardini
,
A.
Castorrini
,
G.
De Matteis
, and
G.
Avanzini
, “
Numerical characterization of helicopter noise hemispheres
,”
Aerosp. Sci. Technol.
52
,
18
28
. (
2016
).
29.
A.
Bagai
, “
Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis
,” Ph.D. dissertation, University of Maryland, College Park, MD,
1995
, http://drum.lib.umd.edu/handle/1903/9139.
30.
J.
Weissinger
, “
The lift distribution of swept-back wings
” (
1947
).
31.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Sci
264
,
321
342
(
1969
).
32.
K. S.
Brentner
and
F.
Farassat
, “
Modeling aerodynamically generated sound of helicopter rotors
,”
Prog. Aerosp. Sci.
39
,
83
120
(
2003
).
33.
T.
Semenova
and
S. F.
Wu
, “
The Helmholtz equation least-squares method and Rayleigh hypothesis in near-field acoustical holography
,”
J. Acoust. Soc. Am.
115
,
1632
1640
(
2004
).
34.
X.
Xu
,
Y.
Lu
,
J.
Lu
, and
M.
Shao
, “
Modal analysis of the influence of freestream on global rotor noise
,”
J. Sound Vib.
555
,
117715
(
2023
).
35.
R. L.
Bennett
and
K. S.
Pearsons
, “
Handbook of aircraft noise metrics
,” (
1981
).
36.
Y. H.
Yu
,
C.
Tung
,
J.
Gallman
,
K. J.
Schultz
,
B.
van der Wall
,
P.
Spiegel
, and
B.
Michea
, “
Aerodynamics and acoustics of rotor blade-vortex interactions
,”
J. Aircr.
32
,
970
977
(
1995
).
37.
J. W.
Elliott
,
S. L.
Althoff
, and
H.
Sailey
, “
Inflow measurements made with a laser velocimeter on a helicopter model in forward flight, Volume II, Rectangular planform blades at an advance ratio of 0.23
” (
1988
).
38.
M. E.
Watts
,
E.
Greenwood
,
C. D.
Smith
, and
J. H.
Stephenson
, “
Noise Abatement Flight Test Data Report
” (2019), http://www.sti.nasa.gov.
39.
D. A.
Conner
,
M. A.
Marcolini
,
W. A.
Decker
,
J. H.
Cline
,
B. D.
Edwards
,
C. O.
Nicks
, and
P. D.
Klein
, “
XV-15 tiltrotor low noise approach operations
,”
Annu. Forum Proc. Am. Helicopter Soc.
1
,
104
118
(
1999
).
40.
J. H.
Stephenson
and
E.
Greenwood
, “
Effects of vehicle weight and true versus indicated airspeed on BVI noise during steady descending flight
,”
Annu. Forum Proc. AHS Int.
1
,
47
56
(
2015
).
41.
M. E.
Watts
,
E.
Greenwood
, and
J. H.
Stephenson
, “
Measurement and characterization of helicopter noise at different altitudes
,”
Annu. Forum Proc. AHS Int.
1
,
19
33
(
2016
).
You do not currently have access to this content.