A toroidal-topology traveling-wave thermoacoustic electric generator (TWTEG) is developed. It consists of a traveling-wave thermoacoustic engine, two linear alternators connected in parallel, and sets of variable resistive-capacitive (R-C) external electric loads, in conjunction with accessories and instrumentation required for experimental investigations. The working medium is helium with a static absolute pressure that varies from 25 bars to 30 bars. A detailed description of the thermal design of the heat exchangers is presented. Sustainable operation of the TWTEG is achieved over a range of external R-C loads at different imposed hot-side temperatures and mean gas pressures. The performance parameters are measured for different experimental conditions and compared with a developed lumped-element model. The comparison between the experimental results and predictions reveals a good agreement. The impedance matching between the thermoacoustic engine and the linear alternators is investigated experimentally over a wide range of external R-C loads. The external R-C loads play a crucial role in the operation of the TWTEG. The mean gas pressure changes the operating frequency; however, it has no significant influence on the operating range of the TWTEG on the R-C load map. Increasing the hot-side temperature improves the thermal-to-acoustic efficiency and extends the operating region into larger regions.

1.
Z.
Yu
,
A. J.
Jaworski
, and
S.
Backhaus
, “
Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy
,”
Appl. Energy
99
,
135
145
(
2012
).
2.
M. E. H.
Tijani
and
S.
Spoelstra
, “
A hot air driven thermoacoustic-Stirling engine
,”
Appl. Therm. Eng.
61
(
2
),
866
870
(
2013
).
3.
R.
Chen
and
S. L.
Garrett
, “
A large solar/heat-driven thermoacoustic cooler
,”
J. Acoust. Soc. Am.
108
(
5_Supplement
),
2554
(
2000
).
4.
Z.
Wu
,
W.
Dai
,
M.
Man
, and
E.
Luo
, “
A solar-powered traveling-wave thermoacoustic electricity generator
,”
Sol. Energy
86
(
9
),
2376
2382
(
2012
).
5.
T.
Jin
,
J.
Huang
,
Y.
Feng
,
R.
Yang
,
K.
Tang
, and
R.
Radebaugh
, “
Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components
,”
Energy
93
,
828
853
(
2015
).
6.
A.
Maddi
,
C.
Olivier
,
G.
Poignand
,
G.
Penelet
,
V.
Pagneux
, and
Y.
Aurégan
, “
Frozen sound: An ultra-low frequency and ultra-broadband non-reciprocal acoustic absorber
,”
Nat. Commun.
14
(
1
),
4028
(
2023
).
7.
Lord Rayleigh
,
Theory of Sound
, 2nd ed. (
Dover Publications
,
Mineola, NY
,
1877
).
8.
R. V. L.
Hartley
, “
Electric power source
,” U.S. patent US2549464A (April 14,
1951
).
9.
P. H.
Ceperley
, “
A pistonless Stirling engine—The traveling wave heat engine
,”
J. Acoust. Soc. Am.
66
(
5
),
1508
1513
(
1979
).
10.
T.
Yazaki
,
A.
Iwata
,
T.
Maekawa
, and
A.
Tominaga
, “
Traveling wave thermoacoustic engine in a looped tube
,”
Phys. Rev. Lett.
81
(
15
),
3128
3131
(
1998
).
11.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic Stirling heat engine
,”
Nature
399
(
6734
),
335
338
(
1999
).
12.
P.
Saechan
and
I.
Dhuchakallaya
, “
Design and experimental evaluation of a travelling wave thermoacoustic engine
,”
Energy Rep.
6
,
1456
1461
(
2020
).
13.
B.
Chen
,
S.
Tian
,
J.
Liu
,
K.
Ho
, and
M.
Yang
, “
The development of a two-stage traveling wave thermoacoustic engine
,”
Energy Procedia
105
,
1551
1556
(
2017
).
14.
K. J.
Bastyr
,
The Design, Construction, and Performance of a High-Frequency, High-Power Thermoacoustic-Stirling Engine
(
Pennsylvania State University
,
University Park, PA
,
2004
).
15.
M.
Petach
,
E.
Tward
, and
S.
Backhaus
, “
Design of a high efficiency power source (HEPS) based on thermoacoustic technology
,” NASA/CR—2004—XXXXX, NASA Center for AeroSpace Information, Hanover, MD (
2004
).
16.
M.
Telesz
, “
Design and testing of a thermoacoustic power converter
,” George W. Woodruff School of Mechanical Engineering, Atlanta, GA (
2006
), available at http://hdl.handle.net/1853/11495 (Last viewed September 3, 2024).
17.
K.
De Blok
, “
Novel 4-stage traveling wave thermoacoustic power generator
,” in
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting
, Montreal, Canada (
ASME
,
New York
,
2010
), Vol.
2
, Fora, pp.
73
79
.
18.
Z.
Yu
,
A. J.
Jaworski
, and
S.
Backhaus
, “
A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
224
(
6
),
787
795
(
2010
).
19.
Z.
Wu
,
L.
Zhang
,
W.
Dai
, and
E.
Luo
, “
Investigation on a 1kW traveling-wave thermoacoustic electrical generator
,”
Appl. Energy
124
,
140
147
(
2014
).
20.
T.
Biwa
,
M.
Prastowo
, and
E.
Shoji
, “
Thermoacoustic modeling of Fluidyne engine with a gas-coupled water pumping line
,”
J. Acoust. Soc. Am.
152
(
4
),
2212
2219
(
2022
).
21.
M. A. G.
Timmer
,
K.
De Blok
, and
T. H.
Van Der Meer
, “
Review on the conversion of thermoacoustic power into electricity
,”
J. Acoust. Soc. Am.
143
(
2
),
841
857
(
2018
).
22.
G.
Chen
,
L.
Tang
,
B.
Mace
, and
Z.
Yu
, “
Multi-physics coupling in thermoacoustic devices: A review
,”
Renew. Sustain. Energy Rev.
146
,
111170
(
2021
).
23.
A.
Piccolo
, “
Study of standing-wave thermoacoustic electricity generators for low-power applications
,”
Appl. Sci.
8
(
2
),
287
(
2018
).
24.
K.
Wang
,
J.
Zhang
,
N.
Zhang
,
D.
Sun
,
K.
Luo
,
J.
Zou
, and
L.
Qiu
, “
Acoustic matching of a traveling-wave thermoacoustic electric generator
,”
Appl. Therm. Eng.
102
,
272
282
(
2016
).
25.
D. M.
Sun
,
K.
Wang
,
X. J.
Zhang
,
Y. N.
Guo
,
Y.
Xu
, and
L. M.
Qiu
, “
A traveling-wave thermoacoustic electric generator with a variable electric R-C load
,”
Appl. Energy
106
,
377
382
(
2013
).
26.
K.
Wang
,
D.
Sun
,
J.
Zhang
,
Y.
Xu
,
J.
Zou
,
K.
Wu
,
L.
Qiu
, and
Z.
Huang
, “
Operating characteristics and performance improvements of a 500 W traveling-wave thermoacoustic electric generator
,”
Appl. Energy
160
,
853
862
(
2015
).
27.
J. R.
Olson
and
G. W.
Swift
, “
Acoustic streaming in pulse tube refrigerators: Tapered pulse tubes
,”
Cryogenics
37
(
12
),
769
776
(
1997
).
28.
G. W.
Swift
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
, 2nd ed. (
Springer International Publishing
,
Cham, Switzerland
,
2017
).
29.
P. S.
Spoor
and
J. A.
Corey
, “
A novel method for controlling piston drift in devices with clearance seals
,” in
Cryocoolers 13
, edited by
R. G.
Ross
(
Springer US
,
Boston
,
2005
), pp.
215
223
.
30.
I. A.
Ramadan
,
H.
Bailliet
,
G.
Poignand
, and
D.
Gardner
, “
Design, manufacturing and testing of a compact thermoacoustic refrigerator
,”
Appl. Therm. Eng.
189
,
116705
(
2021
).
31.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic-Stirling heat engine: Detailed study
,”
J. Acoust. Soc. Am.
107
(
6
),
3148
3166
(
2000
).
32.
D. A.
Wilcox
, “
Experimental investigation of a thermoacoustic-Stirling engine generator with Gedeon streaming suppression
,”
Master's thesis
,
Penn State University
,
University Park, PA
,
2011
.
33.
Z. B.
Yu
,
Q.
Li
,
X.
Chen
,
F. Z.
Guo
, and
X. J.
Xie
, “
Experimental investigation on a thermoacoustic engine having a looped tube and resonator
,”
Cryogenics
45
(
8
),
566
571
(
2005
).
34.
R. S.
Wakeland
, “
Use of electrodynamic drivers in thermoacoustic refrigerators
,”
J. Acoust. Soc. Am.
107
(
2
),
827
832
(
2000
).
35.
A.
Ibrahim
, “
Characteristics of linear alternator performance under thermoacoustic power-conversion conditions
,”
Master's thesis
,
American University in Cairo
,
New Cairo
, Egypt,
2019
.
You do not currently have access to this content.