The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.

1.
Alavi
,
S. M. M.
,
Goetz
,
S. M.
, and
Peterchev
,
A. V.
(
2019
). “
Optimal estimation of neural recruitment curves using Fisher information: Application to transcranial magnetic stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
27
(
6
),
1320
1330
.
2.
Arnoldner
,
C.
(
2024
). (private communication).
3.
Audiffren
,
J.
(
2022
). “
Model based or model free? Comparing adaptive methods for estimating thresholds in neuroscience
,”
Neural Comput.
34
(
2
),
338
359
.
4.
Buran
,
B. N.
,
Elkins
,
S.
,
Kempton
,
J. B.
,
Porsov
,
E. V.
,
Brigande
,
J. V.
, and
David
,
S. V.
(
2020
). “
Optimizing auditory brainstem response acquisition using interleaved frequencies
,”
J. Assoc. Res. Otolaryngol.
21
(
3
),
225
242
.
5.
Cox
,
M.
, and
de Vries
,
B.
(
2021
). “
Bayesian pure-tone audiometry through active learning under informed priors
,”
Front. Digit. Health
3
,
723348
.
6.
Delgado
,
R. E.
, and
Ozdamar
,
O.
(
2004
). “
Deconvolution of evoked responses obtained at high stimulus rates
,”
J. Acoust. Soc. Am.
115
(
3
),
1242
1251
.
7.
Dorr
,
M.
,
Lesmes
,
L. A.
,
Elze
,
T.
,
Wang
,
H.
,
Lu
,
Z.-L.
, and
Bex
,
P. J.
(
2017
). “
Evaluation of the precision of contrast sensitivity function assessment on a tablet device
,”
Sci. Rep.
7
(
1
),
46706
.
8.
Elberling
,
C.
, and
Don
,
M.
(
1984
). “
Quality estimation of averaged auditory brainstem responses
,”
Scand. Audiol.
13
(
3
),
187
197
.
9.
Grado
,
L. L.
,
Johnson
,
M. D.
, and
Netoff
,
T. I.
(
2018
). “
Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson's disease
,”
PLoS Comput. Biol.
14
(
12
),
e1006606
.
10.
Henry
,
K. S.
, and
Abrams
,
K. S.
(
2018
). “
Persistent auditory nerve damage following kainic acid excitotoxicity in the budgerigar (Melopsittacus undulatus)
,”
J. Assoc. Res. Otolaryngol.
19
(
4
),
435
449
.
11.
Kaf
,
W. A.
,
Lewis
,
K. M.
,
Yavuz
,
E.
,
Dixon
,
S. M.
,
Van Ess
,
M.
,
Jamos
,
A. M.
, and
Delgado
,
R. E.
(
2017
). “
Fast click rate electrocochleography and auditory brainstem response in normal-hearing adults using continuous loop averaging deconvolution
,”
Ear Hear.
38
(
2
),
244
254
.
12.
Koo
,
T. K.
, and
Li
,
M. Y.
(
2016
). “
A guideline of selecting and reporting intraclass correlation coefficients for reliability research
,”
J. Chiropractic Med.
15
(
2
),
155
163
.
13.
Lesmes
,
L. A.
,
Jeon
,
S.-T.
,
Lu
,
Z.-L.
, and
Dosher
,
B. A.
(
2006
). “
Bayesian adaptive estimation of threshold versus contrast external noise functions: The quick TvC method
,”
Vision Res.
46
(
19
),
3160
3176
.
14.
Lesmes
,
L. A.
,
Lu
,
Z.-L.
,
Baek
,
J.
, and
Albright
,
T. D.
(
2010
). “
Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method
,”
J. Vision
10
(
3
),
1
21
.
15.
Marticorena
,
D. C. P.
,
Wong
,
Q. W.
,
Browning
,
J.
,
Wilbur
,
K.
,
Jayakumar
,
S.
,
Davey
,
P. G.
,
Seitz
,
A. R.
,
Gardner
,
J. R.
, and
Barbour
,
D. L.
(
2024
). “
Contrast response function estimation with nonparametric Bayesian active learning
,”
J. Vision
24
(
1
),
6
.
16.
McGraw
,
K. O.
, and
Wong
,
S. P.
(
1996
). “
Forming inferences about some intraclass correlation coefficients
,”
Psychol. Methods
1
(
1
),
30
46
.
17.
Pillow
,
J.
, and
Park
,
M.
(
2016
). “
Adaptive Bayesian methods for closed-loop neurophysiology
,” in
Closed Loop Neuroscience
, edited by
A.
El Hady
(
Elsevier
,
Amsterdam, Netherlands
), pp.
3
18
.
18.
Polonenko
,
M. J.
, and
Maddox
,
R. K.
(
2022
). “
Optimizing parameters for using the parallel auditory brainstem response to quickly estimate hearing thresholds
,”
Ear Hear.
43
(
2
),
646
658
.
19.
Rasmussen
,
C.
, and
Nickisch
,
H.
(
2010
). “
Gaussian Processes for Machine Learning (GPML) toolbox
,”
J. Mach. Learn. Res.
11
,
3011
3015
, available at https://www.jmlr.org/papers/volume11/rasmussen10a/rasmussen10a.pdf.
20.
Schlittenlacher
,
J.
, and
Moore
,
B. C. J.
(
2020
). “
Fast estimation of equal-loudness contours using Bayesian active learning and direct scaling
,”
Acoust. Sci. Tech.
41
(
1
),
358
360
.
21.
Schlittenlacher
,
J.
,
Turner
,
R. E.
, and
Moore
,
B. C. J.
(
2018
). “
Audiogram estimation using Bayesian active learning
,”
J. Acoust. Soc. Am.
144
(
1
),
421
430
.
22.
Schlittenlacher
,
J.
,
Turner
,
R. E.
, and
Moore
,
B. C. J.
(
2020
). “
Application of Bayesian active learning to the estimation of auditory filter shapes using the notched-noise method
,”
Trends Hear.
24
,
2331216520952992
.
23.
Schrode
,
K. M.
,
Dent
,
M. L.
, and
Lauer
,
A. M.
(
2022
). “
Sources of variability in auditory brainstem response thresholds in a mouse model of noise-induced hearing loss
,”
J. Acoust. Soc. Am.
152
(
6
),
3576
3582
.
24.
Shen
,
Y.
, and
Kern
,
A. B.
(
2018
).)“
An analysis of individual differences in recognizing monosyllabic words under the speech intelligibility index framework
,”
Trends Hear.
22
,
2331216518761773
.
25.
Shen
,
Y.
, and
Langley
,
L.
(
2023
). “
Spectral weighting for sentence recognition in steady-state and amplitude-modulated noise
,”
JASA Express Lett.
3
(
5
),
055202
.
26.
Shen
,
Y.
,
Petersen
,
E. A.
, and
Neely
,
S. T.
(
2024
). “
Toward parametric Bayesian adaptive procedures for multi-frequency categorical loudness scaling
,”
J. Acoust. Soc. Am.
156
(
1
),
262
277
.
27.
Shen
,
Y.
, and
Richards
,
V. M.
(
2013
). “
Temporal modulation transfer function for efficient assessment of auditory temporal resolution
,”
J. Acoust. Soc. Am.
133
(
2
),
1031
1042
.
28.
Shen
,
Y.
,
Sivakumar
,
R.
, and
Richards
,
V. M.
(
2014
). “
Rapid estimation of high-parameter auditory-filter shapes
,”
J. Acoust. Soc. Am.
136
(
4
),
1857
1868
.
29.
Shen
,
Y.
,
Yun
,
D.
, and
Liu
,
Y.
(
2020
). “
Individualized estimation of the Speech Intelligibility Index for short sentences: Test-retest reliability
,”
J. Acoust. Soc. Am.
148
(
3
),
1647
1661
.
30.
Shen
,
Y.
,
Zhang
,
C.
, and
Zhang
,
Z.
(
2018
). “
Feasibility of interleaved Bayesian adaptive procedures in estimating the equal-loudness contour
,”
J. Acoust. Soc. Am.
144
(
4
),
2363
2374
.
31.
Song
,
X. D.
,
Sukesan
,
K. A.
, and
Barbour
,
D. L.
(
2018
). “
Bayesian active probabilistic classification for psychometric field estimation
,”
Atten. Percept. Psychophys.
80
(
3
),
798
812
.
32.
Song
,
X. D.
,
Wallace
,
B. M.
,
Gardner
,
J. R.
,
Ledbetter
,
N. M.
,
Weinberger
,
K. Q.
, and
Barbour
,
D. L.
(
2015
). “
Fast, continuous audiogram estimation using machine learning
,”
Ear Hear.
36
(
6
),
e326
e335
.
33.
Stanford
,
J. K.
,
Bosworth
,
N. A.
,
Morgan
,
D. S.
,
Chen
,
T.
, and
Spankovich
,
C.
(
2021
). “
A clinically derived guinea pig dosing model of cisplatin ototoxicity
,”
Hearing Res.
404
,
108202
.
34.
Tan
,
X.
,
Zhou
,
Y.
,
Agarwal
,
A.
,
Lim
,
M.
,
Xu
,
Y.
,
Zhu
,
Y.
,
O'Brien
,
J.
,
Tran
,
E.
,
Zheng
,
J.
,
Gius
,
D.
, and
Richter
,
C.-P.
(
2020
). “
Systemic application of honokiol prevents cisplatin ototoxicity without compromising its antitumor effect
,”
Am. J. Cancer Res.
10
(
12
),
4416
4434
.
35.
Watson
,
A. B.
(
2017
). “
QUEST+: A general multidimensional Bayesian adaptive psychometric method
,”
J. Vision
17
(
3
),
10
.
36.
Zerche
,
M.
,
Wrobel
,
C.
,
Kusch
,
K.
,
Moser
,
T.
, and
Mager
,
T.
(
2023
). “
Channelrhodopsin fluorescent tag replacement for clinical translation of optogenetic hearing restoration
,”
Mol. Ther.–Methods Clin. Dev.
29
,
202
212
.
37.
Zhang
,
C.
,
Adler
,
H. J.
,
Manohar
,
S.
,
Salvi
,
R.
,
Sun
,
W.
,
Ye
,
M.
, and
Hu
,
B. H.
(
2022
). “
Galectin-3 protects auditory function in female mice
,”
Hear. Res.
424
,
108602
.
38.
Zhao
,
Z.
,
Ahmadi
,
A.
,
Hoover
,
C.
,
Grado
,
L.
,
Peterson
,
N.
,
Wang
,
X.
,
Freeman
,
D.
,
Murray
,
T.
,
Lamperski
,
A.
,
Darrow
,
D.
, and
Netoff
,
T.
(
2021
). “
Optimization of spinal cord stimulation using Bayesian preference learning and its validation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
29
,
1987
1997
.
You do not currently have access to this content.