In high-precision ultrasonic measurement systems, diffraction correction models accounting for electrical and mechanical boundary conditions may be needed, as shown in prior work using a finite element diffraction correction (FEDC) model for one-way transmit-receive systems. Such descriptions may also be needed for pulse-echo and multiple-reflection ultrasonic measurement applications. The FEDC model is here generalized to n-way measurement systems (n = 1, 2, 3,…) using coaxially aligned piezoelectric transducers in a fluid medium. Comparisons are made with existing diffraction correction models, based on baffled-piston theory combined with (i) specular reflection or (ii) reflection modeled as radiation from a “new source.” Numerical results are given for an example system with two identical cylindrical piezoelectric disks, operating in a fluid medium at ambient conditions. The piston-type diffraction correction models deviate notably from the FEDC model both in the near- and far-fields, and also from each other. The deviations are expected to be application-specific and depend, e.g., on the reflector-to-sound-beam diameter ratio, distance, frequency, and the transducers' vibration patterns. The results show that accurate description of the diffraction effects, such as the one provided by the FEDC model, may be needed in high-precision ultrasonic measurement systems.

1.
A. S.
Khimunin
, “
Numerical calculation of diffraction corrections for precise measurement of ultrasound absorption
,”
Acustica
27
,
173
181
(
1972
).
2.
A. S.
Khimunin
, “
Numerical calculation of diffraction corrections for precise measurement of ultrasound phase velocity
,”
Acustica
32
,
192
200
(
1975
).
3.
P. H.
Rogers
and
A. L.
Van Buren
, “
An exact expression for the Lommel‐diffraction correction integral
,”
J. Acoust. Soc. Am.
55
,
724
728
(
1974
).
4.
J. P. M.
Trusler
,
Physical Acoustics and Metrology of Fluids
(
CRC Press
,
Boca Raton, FL
,
1991
), pp.
227
228
.
5.
C. J.
Daly
and
N. A. H. K.
Rao
,
Scalar Diffraction from a Circular Aperture
(
Springer Science+Business
Media, New York
,
2000
), pp.
2
14
, 73–78, and 152.
6.
S.
Wang
, “
Measurement of gas composition using ultrasonic sensors
,” Ph.D. dissertation,
Imperial College London
,
London, UK
,
2017
.
7.
E. P.
Papadakis
, “
Ultrasonic diffraction loss and phase change in anisotropic materials
,”
J. Acoust. Soc. Am.
40
,
863
876
(
1966
).
8.
P.
Norli
and
P.
Lunde
, “
A three-way pulse method for a precision sound velocity measurement cell
,” in
Proceedings of the 2006 IEEE International Ultrasonics Symposium
,
Vancouver, Canada
(October 2–6,
2006
), pp.
888
893
.
9.
P.
Lunde
and
M.
Vestrheim
, “
Precision sound velocity cell for natural gas at high pressure. Phase 1—Feasibility study
,”
CMR Report No. CMR-98-A10039
,
Christian Michelsen Research
,
Bergen, Norway
(
1998
).
10.
P.
Norli
, “
Sound velocity cell for gas characterization
,” Ph.D. dissertation,
Department of Physics and Technology, University of Bergen
,
Bergen, Norway
,
2007
.
11.
T.
Koturbash
and
I.
Brokarev
, “
Estimation of the energy content of propanated biomethane using ultrasonic measurements
,”
J. Nat. Gas Eng.
86
,
103735
(
2021
).
12.
P. A.
Giuliano Albo
,
S.
Lago
,
R.
Romeo
, and
S.
Lorefice
, “
High pressure density and speed-of-sound measurements in n-undecane and evidence of the effects of near-field diffraction
,”
J. Chem. Thermodyn.
58
,
95
100
(
2013
).
13.
J.-F.
Cardoso
and
M.
Fink
, “
Echographic diffraction filters and the diffraction function for random media through an instantaneous time-frequency approach
,”
J. Acoust. Soc. Am.
90
,
1074
1084
(
1991
).
14.
J. W.
Hunt
,
M.
Arditi
, and
F. S.
Foster
, “
Ultrasound transducers for pulse-echo medical imaging
,”
IEEE Trans. Biomed. Eng.
30
,
453
481
(
1983
).
15.
X. C.
Chen
,
D.
Phillips
,
K. Q.
Schwarz
,
J. G.
Mottley
, and
K. J.
Parker
, “
The measurement of backscatter coefficient from a broadband pulse-echo system: A new formulation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Controlled
44
,
515
525
(
1997
).
16.
K. A.
Wear
,
M. R.
Milunski
,
S. A.
Wickline
,
J. E.
Perez
,
B. E.
Sobel
, and
J. G.
Miller
, “
Differentiation between acutely ischemic myocardium and zones of completed infarction in dogs on the basis of frequency-dependent backscatter
,”
J. Acoust. Soc. Am.
85
,
2634
2641
(
1989
).
17.
J.
Krautkrämer
and
H.
Krautkrämer
,
Ultrasonic Testing of Materials
(
Springer-Verlag
,
Berlin
,
1977
), pp.
90
91
.
18.
T. L.
Rhyne
, “
Radiation coupling of a disk to a plane and back or a disk to disk: An exact solution
,”
J. Acoust. Soc. Am.
61
,
318
324
(
1977
).
19.
X. C.
Chen
,
K. Q.
Schwarz
, and
K. J.
Parker
, “
Acoustic coupling from a focused transducer to a flat plate and back to the transducer
,”
J. Acoust. Soc. Am.
95
,
3049
3054
(
1994
).
20.
E.
Storheim
,
P.
Lunde
, and
M.
Vestrheim
, “
Diffraction correction in ultrasonic fields for measurements of sound velocity in gas. Conventional and alternative methods
,” in
Proceedings of the 34th Scandinavian Symposium on Physical Acoustics
,
Geilo, Norway
(January 30–February 2,
2011
), pp.
1
27
.
21.
E. N.
Mosland
,
P.
Lunde
, and
J.
Kocbach
, “
Finite element-based diffraction correction for piezoelectric transducers accounting for diffraction at transmission, propagation, and reception
,”
J. Acoust. Soc. Am.
154
,
2177
2190
(
2023
).
22.
P. J.
Kortbeek
,
M. J. P.
Muringer
,
N. J.
Trappeniers
, and
S. N.
Biswas
, “
Apparatus for sound velocity measurements in gases up to 10 kbar: Experimental data for argon
,”
Rev. Sci. Instrum.
56
,
1269
1273
(
1985
).
23.
H.
Gedanitz
,
M. J.
Dávila
,
E.
Baumhögger
, and
R.
Span
, “
An apparatus for the determination of speeds of sound in fluids
,”
J. Chem. Thermodyn.
42
,
478
483
(
2010
).
24.
K.
Meier
and
S.
Kabelac
, “
Speed-of-sound measurements in compressed nitrogen and dry air
,”
J. Chem. Eng. Data
61
,
3941
3951
(
2016
).
25.
G.
Cavuoto
,
S.
Lago
,
P. A.
Giuliano Albo
, and
D.
Serazio
, “
Speed of sound measurements in liquid methane (CH4) at cryogenic temperatures between (130 and 162) K and at pressures up to 10 MPa
,”
J. Chem. Thermodyn.
142
,
106007
(
2020
).
26.
O.
Kiyohara
,
J.-P. E.
Grolier
, and
G. C.
Benson
, “
Excess volumes, ultrasonic velocities, and adiabatic compressibilities for binary cycloalkanol mixtures at 25 °C
,”
Can. J. Chem.
52
,
2287
2293
(
1974
).
27.
E. P.
Papadakis
, “
Ultrasonic phase velocity by the pulse-echo-overlap method incorporating diffraction phase corrections
,”
J. Acoust. Soc. Am.
42
,
1045
1051
(
1967
).
28.
H.
Suzuki
,
H.
Tanaka
, and
H.
Hachisuka
, “
Method and apparatus for ultrasonic wave measurement
,” U.S. patent 6,094,987 (
2000
).
29.
P.
Lunde
,
K.-E.
Frøysa
,
R.
Kippersund
, and
M.
Vestrheim
, “
Transient diffraction effects in ultrasonic meters for volumetric, mass and energy flow measurement of natural gas
,” in
Proceedings of the 21st International North Sea Flow Measurement Workshop
,
Tønsberg, Norway
(October 28–31,
2003
), pp.
1
26
.
30.
G. R.
Harris
, “
Review of transient field-theory for a baffled planar piston
,”
J. Acoust. Soc. Am.
70
,
10
20
(
1981
).
31.
C. J.
Daly
and
N. A. H. K.
Rao
, “
A spatially averaged impulse response for an unfocused piston transducer
,”
J. Acoust. Soc. Am.
105
,
1563
1566
(
1999
).
32.
A.
Bulavin
and
Y. F.
Zabashta
,
Ultrasonic Diagnostics in Medicine. Physical Foundations
(
CRC Press
,
Boca Raton, FL
,
2007
), pp.
418
423
.
33.
A. O.
Williams
, “
The piston source at high frequencies
,”
J. Acoust. Soc. Am.
23
,
1
6
(
1951
).
34.
E. N.
Mosland
,
J.
Kocbach
, and
P.
Lunde
, “
Near-field diffraction and reception effects in finite element modeling of ultrasound measurement systems for gas in comparison to measurements in air
,” in
Proceedings of the 2023 IEEE International Ultrasonics Symposium
,
Montreal, Canada
(September 3-8,
2023
).
35.
J. J.
Faran
, “
Sound scattering by solid cylinders and spheres
,”
J. Acoust. Soc. Am.
23
,
405
418
(
1951
).
36.
H.
Überall
, “
Acoustic scattering from elastic cylinders and spheres: Surface waves (Watson transform) and transmitted waves
,”
Traitement Sign.
2
,
353
357
(
1985
).
37.
E. N.
Mosland
,
P.
Lunde
, and
J.
Kocbach
, “
A spectrum-of-spectrum filtering method to extract direct and multipath arrivals from simulations and measurements
,”
MethodsX
11
,
102475
(
2023
).
38.
R.
Øyerhamn
,
E. N.
Mosland
,
E.
Storheim
,
P.
Lunde
, and
M.
Vestrheim
, “
Finite element modeling of ultrasound measurement systems for gas. Comparison with experiments in air
,”
J. Acoust. Soc. Am.
144
,
2613
2625
(
2018
).
39.
ANSI S1.15 (R2016)
,
Measurement Microphones, Part 1: Specifications for Laboratory Standard Microphones
(
American National Standards Institute
,
New York
,
1997
).
40.
L. L.
Foldy
and
H.
Primakoff
, “
A general theory of passive linear electroacoustic transducers and the electroacoustic reciprocity theorem. I
,”
J. Acoust. Soc. Am.
17
,
109
120
(
1945
).
41.
K.
Yamada
and
Y.
Fujii
, “
Acoustic response of circular receiver to a circular source of different radius
,”
J. Acoust. Soc. Am.
40
,
1193
1194
(
1966
).
42.
K.
Beissner
, “
Exact integral expression for the diffraction loss of a circular piston source
,”
Acustica
49
,
212
217
(
1981
).
43.
E.
Storheim
, “
Diffraction effects in the ultrasonic field of transmitting and receiving circular piezoceramic disks in radial mode vibration
,” Ph.D. dissertation,
Department of Physics and Technology, University of Bergen
,
Bergen, Norway
,
2015
.
44.
H.
Seki
,
A.
Granato
, and
R.
Truell
, “
Diffraction effects in the ultrasonic field of a piston source and their importance in the accurate measurement of attenuation
,”
J. Acoust. Soc. Am.
28
,
230
238
(
1956
).
45.
L.
Andersson
and
COMSOL AB
(private communication,
2022
–2023).
46.
M.
Zampolli
,
A.
Tesei
,
F. B.
Jensen
,
N.
Malm
, and
J. B.
Blottman
III
, “
A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
,”
J. Acoust. Soc. Am.
122
,
1472
1485
(
2007
).
47.
COMSOL AB
(
2020
).
Acoustics Module User's Guide, COMSOL Multiphysics® 5.6
(
COMSOL AB
Stockholm, Sweden
), pp.
237
238
.
48.
S.
Yankin
and
COMSOL AB
(private communication,
2023
).
49.
L. L.
Thompson
, “
A review of finite-element methods for time-harmonic acoustics
,”
J. Acoust. Soc. Am.
119
,
1315
1330
(
2006
).
50.
K.
Gerdes
and
F.
Ihlenburg
, “
On the pollution effect in FE solutions of the 3D-Helmholtz equation
,”
Comput. Methods Appl. Mech. Eng.
170
,
155
172
(
1999
).
51.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
2000
).
52.
K. G.
Foote
, “
Discriminating between the nearfield and the farfield of acoustic transducers
,”
J. Acoust. Soc. Am.
136
,
1511
1517
(
2014
).
53.
E. N.
Mosland
,
J.
Kocbach
,
E.
Storheim
, and
P.
Lunde
, “
Radiation in air from a piezoelectric ceramic disk in radial mode vibration. Contributions from front, side and rear surfaces
,” in
Proceedings of the 45th Scandinavian Symposium on Physical Acoustics
, online (January 31–February 1,
2022
).

Supplementary Material

You do not currently have access to this content.