Over the past few decades, early osteoporosis detection using ultrasonic bone quality evaluation has gained prominence. Specifically, various studies focused on axial transmission using ultrasonic guided waves and have highlighted this technique's sensitivity to intrinsic properties of long cortical bones. This work aims to demonstrate the potential of low-frequency ultrasonic guided waves to infer the properties of the bone inside which they are propagating. A proprietary ultrasonic transducer, tailored to transmit ultrasonic guided waves under 500 kHz, was used for the data collection. The gathered data underwent two-dimensional fast Fourier transform processing to extract experimental dispersion curves. The proposed inversion scheme compares experimental dispersion curves with simulated dispersion curves calculated through the semi-analytical iso-geometric analysis (SAIGA) method. The numerical model integrates a bone phantom plate coupled with a soft tissue layer on its top surface, mimicking the experimental bone phantom plates. Subsequently, the mechanical properties of the bone phantom plates were estimated by reducing the misfit between the experimental and simulated dispersion curves. This inversion leaned heavily on the dispersive trajectories and amplitudes of ultrasonic guided wave modes. Results indicate a marginal discrepancy under 5% between the mechanical properties ascertained using the SAIGA-based inversion and those measured using bulk wave pulse-echo measurements.

1.
W. H. Organization
, “Assessment of fracture risk and its application to screening for postmenopausal osteoporosis,” in
Report of a WHO Study Group
, Rome, Italy (June 22–25, 1992) (
World Health Organization
,
Geneva
,
1994
), https://apps.who.int/iris/handle/10665/39142 (Last viewed June 28, 2022).
2.
W. H. Organization
,
Guidelines for Preclinical Evaluation and Clinical Trials in Osteoporosis
(
World Health Organization
,
Geneva
,
1998
), https://apps.who.int/iris/handle/10665/42088 (Last viewed June 28, 2022).
3.
N.
Bochud
,
Q.
Vallet
,
J.-G.
Minonzio
, and
P.
Laugier
, “
Predicting bone strength with ultrasonic guided waves
,”
Sci. Rep.
7
(
1
),
43628
(
2017
).
4.
P.
Laugier
and
G.
Haïat
,
Bone Quantitative Ultrasound
(
Springer Netherlands
,
Dordrecht
,
2011
).
5.
P.
Laugier
and
Q.
Grimal
,
Bone Quantitative Ultrasound: New Horizons
, Advances in Experimental Medicine and Biology Vol. 1364 (
Springer International Publishing
,
Cham
,
2022
).
6.
C.
Cooper
,
G.
Campion
, and
L. J.
Melton
, “
Hip fractures in the elderly: A world-wide projection
,”
Osteoporosis Int.
2
(
6
),
285
289
(
1992
).
7.
J. A.
Kanis
,
O.
Johnell
,
A.
Oden
,
B.
Jonsson
,
C.
De Laet
, and
A.
Dawson
, “
Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis
,”
Bone
27
(
5
),
585
590
(
2000
).
8.
L. J.
Melton
,
E. A.
Chrischilles
,
C.
Cooper
,
A. W.
Lane
, and
B. L.
Riggs
, “
How many women have osteoporosis?
,”
J. Bone Miner. Res.
20
(
5
),
886
892
(
2005
).
9.
A.
Randell
,
P. N.
Sambrook
,
T. V.
Nguyen
,
H.
Lapsley
,
G.
Jones
,
P. J.
Kelly
, and
J. A.
Eisman
, “
Direct clinical and welfare costs of osteoporotic fractures in elderly men and women
,”
Osteoporosis Int.
5
(
6
),
427
432
(
1995
).
10.
S. R.
Cummings
,
D. B.
Karpf
,
F.
Harris
,
H. K.
Genant
,
K.
Ensrud
,
A. Z.
LaCroix
, and
D. M.
Black
, “
Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs
,”
Am. J. Med.
112
(
4
),
281
289
(
2002
).
11.
O.
Johnell
,
J. A.
Kanis
,
A.
Odén
,
I.
Sernbo
,
I.
Redlund-Johnell
,
C.
Petterson
,
C.
De Laet
, and
B.
Jönsson
, “
Mortality after osteoporotic fractures
,”
Osteoporos. Int.
15
(
1
),
38
42
(
2004
).
12.
K.
Engelke
,
C.
Libanati
,
Y.
Liu
,
H.
Wang
,
M.
Austin
,
T.
Fuerst
,
B.
Stampa
,
W.
Timm
, and
H. K.
Genant
, “
Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: Accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA)
,”
Bone
45
(
1
),
110
118
(
2009
).
13.
N.
Li
,
X.-m.
Li
,
L.
Xu
,
W.-j.
Sun
,
X.-g.
Cheng
, and
W.
Tian
, “
Comparison of QCT and DXA: Osteoporosis detection rates in postmenopausal women
,”
Int. J. Endocrinol.
2013
,
895474
.
14.
W.
Kalender
,
K.
Engelke
,
T. P.
Fuerst
,
C.-C.
Glüer
,
P.
Laugier
, and
J.
Shepherd
, “
Quantitative aspects of bone densitometry: Contents
,”
J. ICRU
9
(
1
),
NP.2
NP
(
2009
).
15.
C.-C.
Glüer
, “
Quantitative ultrasound techniques for the assessment of osteoporosis: Expert agreement on current status
,”
J. Bone Miner. Res.
12
(
8
),
1280
1288
(
1997
).
16.
Q.
Grimal
,
J.
Grondin
,
S.
Guérard
,
R.
Barkmann
,
K.
Engelke
,
C.-C.
Glüer
, and
P.
Laugier
, “
Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: Results of a pilot study
,”
J. Bone Miner. Res.
28
(
2
),
302
312
(
2013
).
17.
J.-G.
Minonzio
,
M.
Talmant
, and
P.
Laugier
, “
Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration
,”
J. Acoust. Soc. Am.
127
(
5
),
2913
2919
(
2010
).
18.
N.
Bochud
,
Q.
Vallet
,
Y.
Bala
,
H.
Follet
,
J.-G.
Minonzio
, and
P.
Laugier
, “
Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization
,”
Phys. Med. Biol.
61
(
19
),
6953
6974
(
2016
).
19.
D.
Pereira
,
A.
Le Duff
,
G.
Painchaud-April
, and
P.
Belanger
, “
Simulation-based inversion for the characterization of adhesively bonded joints using ultrasonic guided waves
,”
IEEE Trans. Ultrason, Ferroelect, Freq. Contr.
69
(
7
),
2400
2407
(
2022
).
20.
M.
Asif
,
M. A.
Khan
,
S. Z.
Khan
,
R. S.
Choudhry
, and
K. A.
Khan
, “
Identification of an effective nondestructive technique for bond defect determination in laminate composites–A technical review
,”
J. Composite Mater.
52
(
26
),
3589
3599
(
2018
).
21.
K.
Heller
,
L.
Jacobs
, and
J.
Qu
, “
Characterization of adhesive bond properties using Lamb waves
,”
NDT&E
33
(
8
),
555
563
(
2000
).
22.
S. I.
Rokhlin
,
B.
Xie
, and
A.
Baltazar
, “
Quantitative ultrasonic characterization of environmental degradation of adhesive bonds
,”
J. Adhes. Sci. Technol.
18
(
3
),
327
359
(
2004
).
23.
M.
Ponschab
,
D. A.
Kiefer
, and
S. J.
Rupitsch
, “
Simulation-based characterization of mechanical parameters and thickness of homogeneous plates using guided waves
,”
IEEE Trans. Ultrason, Ferroelect, Freq. Contr.
66
(
12
),
1898
1905
(
2019
).
24.
L.
Bai
,
K.
Xu
,
D.
Li
,
D.
Ta
,
L. H.
Le
, and
W.
Wang
, “
Fatigue evaluation of long cortical bone using ultrasonic guided waves
,”
J. Biomech.
77
,
83
90
(
2018
).
25.
A.
Guha
,
M.
Aynardi
,
P.
Shokouhi
, and
C. J.
Lissenden
, “
Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling
,”
Ultrasonics
114
,
106407
(
2021
).
26.
R.
Barkmann
,
E.
Kantorovich
,
C.
Singal
,
D.
Hans
,
H. K.
Genant
,
M.
Heller
, and
C.-C.
Glüer
, “
A new method for quantitative ultrasound measurements at multiple skeletal sites: First results of precision and fracture discrimination
,”
J. Clin. Densitom.
3
(
1
),
1
7
(
2000
).
27.
M.
Muller
,
P.
Moilanen
,
E.
Bossy
,
P.
Nicholson
,
V.
Kilappa
,
J.
Timonen
,
M.
Talmant
,
S.
Cheng
, and
P.
Laugier
, “
Comparison of three ultrasonic axial transmission methods for bone assessment
,”
Ultrasound Med. Biol.
31
(
5
),
633
642
(
2005
).
28.
C. F.
Njeh
,
I.
Saeed
,
M.
Grigorian
,
D. L.
Kendler
,
B.
Fan
,
J.
Shepherd
,
M.
McClung
,
W. M.
Drake
, and
H. K.
Genant
, “
Assessment of bone status using speed of sound at multiple anatomical sites
,”
Ultrasound Med. Biol.
27
(
10
),
1337
1345
(
2001
).
29.
M.
Talmant
,
S.
Kolta
,
C.
Roux
,
D.
Haguenauer
,
I.
Vedel
,
B.
Cassou
,
E.
Bossy
, and
P.
Laugier
, “
In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment
,”
Ultrasound Med. Biol.
35
(
6
),
912
919
(
2009
).
30.
M.
Sasso
,
G.
Haiat
,
M.
Talmant
,
P.
Laugier
, and
S.
Naili
, “
Singular value decomposition-based wave extraction in axial transmission: Application to cortical bone ultrasonic characterization [correspondence]
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
55
(
6
),
1328
1332
(
2008
).
31.
G.
Haïat
,
S.
Naili
,
Q.
Grimal
,
M.
Talmant
,
C.
Desceliers
, and
C.
Soize
, “
Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: Application to axial transmission
,”
J. Acoust. Soc. Am.
125
(
6
),
4043
4052
(
2009
).
32.
D.
Hans
,
L.
Genton
,
S.
Allaoua
,
C.
Pichard
, and
D. O.
Slosman
, “
Hip fracture discrimination study
,”
J. Clin. Densitom.
6
(
2
),
163
172
(
2003
).
33.
K. M.
Knapp
,
K. M.
Knapp
,
G. M.
Blake
,
T. D.
Spector
, and
I.
Fogelman
, “
Multisite quantitative ultrasound: Precision, age- and menopause-related changes, fracture discrimination, and T-score equivalence with dual-energy X-ray absorptiometry
,”
Osteoporosis Int.
12
(
6
),
456
464
(
2001
).
34.
J.-G.
Minonzio
,
J.
Foiret
,
P.
Moilanen
,
J.
Pirhonen
,
Z.
Zhao
,
M.
Talmant
,
J.
Timonen
, and
P.
Laugier
, “
A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
137
(
1
),
EL98
EL104
(
2015
).
35.
P.
Moilanen
,
P. H.
Nicholson
,
V.
Kilappa
,
S.
Cheng
, and
J.
Timonen
, “
Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study
,”
Ultrasound Med. Biol.
33
(
2
),
254
262
(
2007
).
36.
R. M.
Zebaze
,
A.
Ghasem-Zadeh
,
A.
Bohte
,
S.
Iuliano-Burns
,
M.
Mirams
,
R. I.
Price
,
E. J.
Mackie
, and
E.
Seeman
, “
Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: A cross-sectional study
,”
Lancet
375
(
9727
),
1729
1736
(
2010
).
37.
P.
Moilanen
,
P.
Nicholson
,
V.
Kilappa
,
S.
Cheng
, and
J.
Timonen
, “
Measuring guided waves in long bones: Modeling and experiments in free and immersed plates
,”
Ultrasound Med. Biol.
32
(
5
),
709
719
(
2006
).
38.
P.
Moilanen
, “
Ultrasonic guided waves in bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
55
(
6
),
1277
1286
(
2008
).
39.
D.
Ta
,
W.
Wang
,
Y.
Wang
,
L. H.
Le
, and
Y.
Zhou
, “
Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone
,”
Ultrasound Med. Biol.
35
(
4
),
641
652
(
2009
).
40.
D.
Pereira
,
G.
Haiat
,
J.
Fernandes
, and
P.
Belanger
, “
Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method
,”
J. Acoust. Soc. Am.
141
(
4
),
2538
2547
(
2017
).
41.
J.
Foiret
,
J.-G.
Minonzio
,
C.
Chappard
,
M.
Talmant
, and
P.
Laugier
, “
Combined estimation of thickness and velocities using ultrasound guided waves: A pioneering study on in vitro cortical bone samples
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
61
(
9
),
1478
1488
(
2014
).
42.
J.
Chen
,
J.
Foiret
,
J.-G.
Minonzio
,
M.
Talmant
,
Z.
Su
,
L.
Cheng
, and
P.
Laugier
, “
Measurement of guided mode wavenumbers in soft tissue–bone mimicking phantoms using ultrasonic axial transmission
,”
Phys. Med. Biol.
57
(
10
),
3025
3037
(
2012
).
43.
T. N.
Tran
,
L.
Stieglitz
,
Y. J.
Gu
, and
L. H.
Le
, “
Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue
,”
Ultrasound Med. Biol.
39
(
12
),
2422
2430
(
2013
).
44.
P.
Moilanen
,
M.
Talmant
,
V.
Kilappa
,
P.
Nicholson
,
S.
Cheng
,
J.
Timonen
, and
P.
Laugier
, “
Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius
,”
J. Acoust. Soc. Am.
124
(
4
),
2364
2373
(
2008
).
45.
Y.
Li
,
K.
Xu
,
Y.
Li
,
F.
Xu
,
D.
Ta
, and
W.
Wang
, “
Deep learning analysis of ultrasonic guided waves for cortical bone characterization
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
68
,
935
951
(
2021
).
46.
D.
Pereira
,
J.
Fernandes
, and
P.
Belanger
, “
Ex vivo assessment of cortical bone properties using low-frequency ultrasonic guided waves
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Contr.
67
(
5
),
910
922
(
2020
).
47.
F.
Seyfaddini
,
H.
Nguyen-Xuan
, and
V.-H.
Nguyen
, “
A semi-analytical isogeometric analysis for wave dispersion in functionally graded plates immersed in fluids
,”
Acta Mech.
232
(
1
),
15
32
(
2021
).
48.
F.
Seyfaddini
,
H.
Nguyen-Xuan
, and
V.-H.
Nguyen
, “
Wave dispersion analysis of three-dimensional vibroacoustic waveguides with semi-analytical isogeometric method
,”
Comput. Methods Appl. Mech. Eng.
385
,
114043
(
2021
).
49.
M.
Muller
,
D.
Mitton
,
P.
Moilanen
,
V.
Bousson
,
M.
Talmant
, and
P.
Laugier
, “
Prediction of bone mechanical properties using QUS and pQCT: Study of the human distal radius
,”
Med. Eng. Phys.
30
(
6
),
761
767
(
2008
).
50.
J.-Y.
Rho
,
L.
Kuhn-Spearing
, and
P.
Zioupos
, “
Mechanical properties and the hierarchical structure of bone
,”
Med. Eng. Phys.
20
(
2
),
92
102
(
1998
).
51.
V.
Sansalone
,
S.
Naili
,
V.
Bousson
,
C.
Bergot
,
F.
Peyrin
,
J.
Zarka
,
J. D.
Laredo
, and
G.
Haïat
, “
Determination of the heterogeneous anisotropic elastic properties of human femoral bone: From nanoscopic to organ scale
,”
J. Biomech.
43
(
10
),
1857
1863
(
2010
).
52.
A.
Sarvazyan
, “
Elastic properties of soft tissues
,” in
Handbook of Elastic Properties of Solids, Liquids, and Gases
(
Academic Press
,
New York
,
2001
), Vol.
III
.
53.
M.-B.
Vu
and
T.
Nguyen-Sy
, “
On the effective anisotropic elastic properties of porous hydroxyapatite, porous collagen, and cortical bone: A homogenization scheme with percolation threshold concept
,”
Math. Mech. Solids
24
(
4
),
1091
1102
(
2019
).
54.
R. O.
Potts
,
D. A.
Chrisman
, and
M.
Buras
, “
The dynamic mechanical properties of human skin in vivo
,”
J. Biomech.
16
(
6
),
365
372
(
1983
).
55.
J.-G.
Minonzio
,
N.
Bochud
,
Q.
Vallet
,
Y.
Bala
,
D.
Ramiandrisoa
,
H.
Follet
,
D.
Mitton
, and
P.
Laugier
, “
Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study
,”
Bone
116
,
111
119
(
2018
).
56.
J.
Wu
and
F.
Cubberley
, “
Measurement of velocity and attenuation of shear waves in bovine compact bone using ultrasonic spectroscopy
,”
Ultrasound Med. Biol.
23
(
1
),
129
134
(
1997
).
57.
M.
Sasso
,
G.
Haïat
,
Y.
Yamato
,
S.
Naili
, and
M.
Matsukawa
, “
Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone
,”
J. Biomech.
41
(
2
),
347
355
(
2008
).
58.
S.
Naili
,
M.-B.
Vu
,
Q.
Grimal
,
M.
Talmant
,
C.
Desceliers
,
C.
Soize
, and
G.
Haïat
, “
Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission
,”
J. Acoust. Soc. Am.
127
(
4
),
2622
2634
(
2010
).
59.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids I: Free and Guided Propagation
(
Springer Science & Business Media
,
New York
,
1999
).
60.
Z. A. B.
Ahmad
,
J. M.
Vivar-Perez
, and
U.
Gabbert
, “
Semi-analytical finite element method for modeling of Lamb wave propagation
,”
CEAS Aeronaut. J.
4
(
1
),
21
33
(
2013
).
61.
W.
Karunasena
,
A. H.
Shah
, and
S. K.
Datta
, “
Wave propagation in a multilayered laminated cross-ply composite plate
,”
J. Appl. Mech.
58
(
4
),
1028
1032
(
1991
).
62.
M. V.
Predoi
,
M.
Castaings
,
B.
Hosten
, and
C.
Bacon
, “
Wave propagation along transversely periodic structures
,”
J. Acoust. Soc. Am.
121
(
4
),
1935
1944
(
2007
).
63.
L.
Piegl
and
W.
Tiller
,
The NURBS Book
(
Springer Science & Business Media
,
New York
,
1996
).
64.
D.
Starkey
, “
NURBS: Non-uniform rational B-splines
” (
2009
), https://www.cs.montana.edu/courses/spring2009/525/dslectures/NURBS.pdf (Last viewed October 5, 2023).
65.
T. D.
Mast
, “
Empirical relationships between acoustic parameters in human soft tissues
,”
Acoust. Res. Lett. Online
1
(
2
),
37
42
(
2000
).
66.
D.
Alleyne
and
P.
Cawley
, “
A two-dimensional Fourier transform method for the measurement of propagating multimode signals
,”
J. Acoust. Soc. Am.
89
(
3
),
1159
1168
(
1991
).
67.
M. O.
Culjat
,
D.
Goldenberg
,
P.
Tewari
, and
R. S.
Singh
, “
A review of tissue substitutes for ultrasound imaging
,”
Ultrasound Med. Biol.
36
(
6
),
861
873
(
2010
).
68.
S.
Nobakhti
and
S. J.
Shefelbine
, “
On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone
,”
Curr. Osteoporos. Rep.
16
(
4
),
404
410
(
2018
).
69.
T. S.
Keller
,
Z.
Mao
, and
D. M.
Spengler
, “
Young's modulus, bending strength, and tissue physical properties of human compact bone
,”
J. Orthop. Res.
8
(
4
),
592
603
(
1990
).
70.
M.
Granke
,
Q.
Grimal
,
A.
Saïed
,
P.
Nauleau
,
F.
Peyrin
, and
P.
Laugier
, “
Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women
,”
Bone
49
(
5
),
1020
1026
(
2011
).
71.
W. J.
Parnell
,
M. B.
Vu
,
Q.
Grimal
, and
S.
Naili
, “
Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone
,”
Biomech. Model. Mechanobiol.
11
(
6
),
883
901
(
2012
).
You do not currently have access to this content.