Environment estimation is a challenging task in reverberant settings such as the underwater and indoor acoustic domains. The locations of reflective boundaries, for example, can be estimated using acoustic echoes and leveraged for subsequent, more accurate localization and mapping. Current boundary estimation methods are constrained to high signal-to-noise ratios or are customized to specific environments. Existing methods also often require a correct assignment of echoes to boundaries, which is difficult if spurious echoes are detected. To evade these limitations, a convolutional neural network (NN) method is developed for robust two-dimensional boundary estimation, given known emitter and receiver locations. A Hough transform-inspired algorithm is leveraged to transform echo times of arrival into images, which are amenable to multi-resolution regression by NNs. The same architecture is trained on transform images of different resolutions to obtain diverse NNs, deployed sequentially for increasingly refined boundary estimation. A correct echo labeling solution is not required, and the method is robust to reverberation. The proposed method is tested in simulation and for real data from a water tank, where it outperforms state-of-the-art alternatives. These results are encouraging for the future development of data-driven three-dimensional environment estimation with high practical value in underwater acoustic detection and tracking.

1.
Ali
,
W. H.
,
Bhabra
,
M. S.
,
Lermusiaux
,
P. F.
,
March
,
A.
,
Edwards
,
J. R.
,
Rimpau
,
K.
, and
Ryu
,
P.
(
2019
). “
Stochastic oceanographic-acoustic prediction and Bayesian inversion for wide area ocean floor mapping
,” in
OCEANS 2019 MTS/IEEE Seattle
, October 27–31, 2019, Seattle, WA (IEEE, New York), pp.
1
10
.
2.
Antonacci
,
F.
,
Filos
,
J.
,
Thomas
,
M. R.
,
Habets
,
E. A.
,
Sarti
,
A.
,
Naylor
,
P. A.
, and
Tubaro
,
S.
(
2012
). “
Inference of room geometry from acoustic impulse responses
,”
IEEE Trans. Audio, Speech, Lang. Process.
20
(
10
),
2683
2695
.
3.
Antonacci
,
F.
,
Sarti
,
A.
, and
Tubaro
,
S.
(
2010
). “
Geometric reconstruction of the environment from its response to multiple acoustic emissions
,” in
ICASSP 2010—IEEE International Conference Acoustics, Speech and Signal Processing
, March 14–19, 2010, Dallas, TX (IEEE, New York), pp.
2822
2825
.
4.
Arikan
,
T.
,
Weiss
,
A.
,
Vishnu
,
H.
,
Deane
,
G. B.
,
Singer
,
A. C.
, and
Wornell
,
G. W.
(
2023a
). “
An architecture for passive joint localization and structure learning in reverberant environments
,”
J. Acoust. Soc. Am.
153
(
1
),
665
677
.
5.
Arikan
,
T.
,
Weiss
,
A.
,
Vishnu
,
H.
,
Deane
,
G. B.
,
Singer
,
A. C.
, and
Wornell
,
G. W.
(
2023b
). “
Learning environmental structure using acoustic probes with a deep neural network
,” in
ICASSP 2023—IEEE International Conference Acoustics, Speech and Signal Processing
, June 4–10, 2023, Rhodes, Greece (IEEE, New York), Vol.
26
, pp.
1
5
.
6.
Borrmann
,
D.
,
Elseberg
,
J.
,
Lingemann
,
K.
, and
Nüchter
,
A.
(
2011
). “
The 3D Hough transform for plane detection in point clouds: A review and a new accumulator design
,”
3D Res.
2
(
2
),
3
.
7.
Brutti
,
A.
,
Omologo
,
M.
, and
Svaizer
,
P.
(
2010
). “
Multiple source localization based on acoustic map de-emphasis
,”
EURASIP J. Audio, Speech, Music Process.
2010
,
147495
.
8.
Cheung
,
K. W.
,
So
,
H. C.
,
Ma
,
W. K.
, and
Chan
,
Y. T.
(
2004
). “
Least squares algorithms for time-of-arrival-based mobile location
,”
IEEE Trans. Signal Process.
52
(
4
),
1121
1130
.
9.
Chitre
,
M.
(
2007
). “
A high-frequency warm shallow water acoustic communications channel model and measurements
,”
J. Acoust. Soc. Am.
122
(
5
),
2580
2586
.
10.
Crocco
,
M.
,
Trucco
,
A.
, and
Del Bue
,
A.
(
2017
). “
Uncalibrated 3D room geometry estimation from sound impulse responses
,”
J. Franklin Inst.
354
(
18
),
8678
8709
.
11.
Dardari
,
D.
,
Chong
,
C. C.
, and
Win
,
M. Z.
(
2006
). “
Improved lower bounds on time-of-arrival estimation error in realistic UWB channels
,” in
2006 IEEE International Conference on Ultra-Wideband
, September 24–27, 2006, Waltham, Ma (IEEE, New York), pp.
531
537
.
12.
Dardari
,
D.
,
Conti
,
A.
,
Ferner
,
U.
,
Giorgetti
,
A.
, and
Win
,
M. Z.
(
2009
). “
Ranging with ultrawide bandwidth signals in multipath environments
,”
Proc. IEEE
97
(
2
),
404
426
.
13.
Deane
,
G. B.
(
1994
). “
A three-dimensional analysis of sound propagation in facetted geometries
,”
J. Acoust. Soc. Am.
96
(
5
),
2897
2907
.
14.
Demirli
,
R.
, and
Saniie
,
J.
(
2001
). “
Model-based estimation of ultrasonic echoes. Part I: Analysis and algorithms
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
48
(
3
),
787
802
.
15.
Dokmanic
,
I.
,
Parhizkar
,
R.
,
Ranieri
,
J.
, and
Vetterli
,
M.
(
2015
). “
Euclidean distance matrices: Essential theory, algorithms, and applications
,”
IEEE Signal Process. Mag.
32
(
6
),
12
30
.
16.
Dokmanic
,
I.
,
Parhizkar
,
R.
,
Walther
,
A.
,
Lu
,
Y. M.
, and
Vetterli
,
M.
(
2013
). “
Acoustic echoes reveal room shape
,”
Proc. Natl. Acad. Sci.
110
(
30
),
12186
12191
.
17.
Huang
,
Z.
,
Xu
,
J.
,
Gong
,
Z.
,
Wang
,
H.
, and
Yan
,
Y.
(
2018
). “
Source localization using deep neural networks in a shallow water environment
,”
J. Acoust. Soc. Am.
143
(
5
),
2922
2932
.
18.
Jia
,
T.
, and
Buehrer
,
R. M.
(
2008
). “
A new Cramer-Rao lower bound for TOA-based localization
,” in
MILCOM 2008—IEEE Military Communications Conference
, November 16–19, 2008, San Diego, CA (IEEE, New York), pp.
1
5
.
19.
Korhonen
,
T.
(
2008
). “
Acoustic localization using reverberation with virtual microphones
,” in
Proceedings of the International Workshop on Acoustic Echo and Noise Control (IWAENC)
, September 14–17, 2008, Seattle, WA (IEEE, New York), pp.
211
223
.
20.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
(
2012
). “
ImageNet classification with deep convolutional neural networks
,” in
Advances in Neural Information Processing Systems
, December 3–6, 2012, Lake Tahoe, NV (IEEE, New York), Vol.
25
.
21.
Lee
,
J. Y.
,
Kim
,
Y.
,
Lee
,
S.
,
Cho
,
W.
, and
Kim
,
S. C.
(
2019
). “
Estimation of room shape using radio propagation channel analysis
,”
IEEE Sens. J.
19
(
24
),
12316
12324
.
22.
Naseri
,
H.
,
Costa
,
M.
, and
Koivunen
,
V.
(
2014
). “
Multipath-aided cooperative network localization using convex optimization
,” in
48th Asilomar Conf. Signals, Syst. Comput.
, November 2–5, 2014, Pacific Grove, CA (IEEE, New York), pp.
1515
1520
.
23.
Naseri
,
H.
, and
Koivunen
,
V.
(
2016
). “
Cooperative simultaneous localization and mapping by exploiting multipath propagation
,”
IEEE Trans. Signal Process.
65
(
1
),
200
211
.
24.
Niu
,
H.
,
Gong
,
Z.
,
Ozanich
,
E.
,
Gerstoft
,
P.
,
Wang
,
H.
, and
Li
,
Z.
(
2019
). “
Deep-learning source localization using multi-frequency magnitude-only data
,”
J. Acoust. Soc. Am.
146
(
1
),
211
222
.
25.
Niu
,
H.
,
Ozanich
,
E.
, and
Gerstoft
,
P.
(
2017a
). “
Ship localization in Santa Barbara Channel using machine learning classifiers
,”
J. Acoust. Soc. Am.
142
(
5
), EL455–EL460.
26.
Niu
,
H.
,
Reeves
,
E.
, and
Gerstoft
,
P.
(
2017b
). “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
.
27.
Park
,
S.
, and
Choi
,
J.
(
2021
). “
Iterative echo labeling algorithm with convex hull expansion for room geometry estimation
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
29
(
3
),
1463
1478
.
28.
Porter
,
M. B.
(
2011
). “
The BELLHOP Manual and User's Guide: Preliminary draft
,” pp.
1
57
.
29.
Ribeiro
,
F.
,
Zhang
,
C.
,
Florêncio
,
D. A.
, and
Ba
,
D. E.
(
2010
). “
Using reverberation to improve range and elevation discrimination for small array sound source localization
,”
IEEE Trans. Audio, Speech, Lang. Process.
18
(
7
),
1781
1792
.
30.
Szegedy
,
C.
,
Toshev
,
A.
, and
Erhan
,
D.
(
2013
). “
Deep neural networks for object detection
,” in
Advances in Neural Information Processing Systems
, December 5–10, Lake Tahoe, NV (IEEE, New York), Vol.
26
.
31.
Too
,
Y. M.
,
Chitre
,
M.
,
Barbastathis
,
G.
, and
Pallayil
,
V.
(
2019
). “
Localizing snapping shrimp noise using a small-aperture array
,”
IEEE J. Ocean. Eng.
44
(
1
),
207
219
.
32.
Weinstein, E., and
Weiss
,
A.
(
1984
). “
Fundamental limitations in passive time delay estimation–Part II: Wide-band systems
,”
IEEE Trans. Acoust., Speech, Signal Process.
32
(
5
),
1064
1078
.
33.
Weiss
,
A.
,
Arikan
,
T.
,
Vishnu
,
H.
,
Deane
,
G. B.
,
Singer
,
A. C.
, and
Wornell
,
G. W.
(
2022
). “
A semi-blind method for localization of underwater acoustic sources
,”
IEEE Trans. Signal Process.
70
,
3090
3106
.
34.
Weiss
,
A.
, and
Weinstein
,
E.
(
1983
). “
Fundamental limitations in passive time delay estimation–Part I: Narrow-band systems
,”
IEEE Trans. Acoust., Speech, Signal Process.
31
(
2
),
472
486
.
35.
Wu
,
Y.
,
Ayyalasomayajula
,
R.
,
Bianco
,
M. J.
,
Bharadia
,
D.
, and
Gerstoft
,
P.
(
2021
). “
Sslide: Sound source localization for indoors based on deep learning
,” in
ICASSP 2021—IEEE International Conference Acoustics, Speech and Signal Processing
, June 6–11, 2021, Toronto, Canada (IEEE, New York), pp.
4680
4684
.
You do not currently have access to this content.