Recent advances in additive manufacturing (AM) of viscoelastic materials have paved the way toward the design of increasingly complex structures. In particular, emerging biomedical applications in acoustics involve structures with periodic micro-architectures, which require a precise knowledge of longitudinal and transverse bulk properties of the constituent materials. However, the identification of the transverse properties of highly soft and attenuating materials remains particularly challenging. Thereby, the present work provides a methodological framework to identify the frequency-dependent ultrasound characteristics (i.e., phase velocity and attenuation) of viscoelastic materials. The proposed approach relies on an inverse procedure based on angular measurements achieved in double through-transmission, referred as θ-scan. Toward this goal, a forward modeling of the double transmitted waves through a homogeneous solid is proposed for any incidence angle based on the global matrix formalism. The experimental validation is conducted by performing ultrasound measurements on two types of photopolymers that are commonly employed for AM purposes: a soft elastomer (ElasticoTM Black) and a glassy polymer (VeroUltraTM White). As a result, the inferred dispersive ultrasound characteristics are of interest for the computational calibration and validation of models involving complex multi-material structures in the MHz regime.

1.
N.
Li
,
S.
Huang
,
G.
Zhang
,
R.
Qin
,
W.
Liu
,
H.
Xiong
,
G.
Shi
, and
J.
Blackburn
, “
Progress in additive manufacturing on new materials: A review
,”
J. Mater. Sci. Technol.
35
(
2
),
242
269
(
2019
).
2.
A.
du Plessis
,
C.
Broeckhoven
,
I.
Yadroitsava
,
I.
Yadroitsev
,
C. H.
Hands
,
R.
Kunju
, and
D.
Bhate
, “
Beautiful and functional: A review of biomimetic design in additive manufacturing
,”
Addit. Manuf.
27
,
408
427
(
2019
).
3.
A.
Velasco-Hogan
,
J.
Xu
, and
M. A.
Meyers
, “
Additive manufacturing as a method to design and optimize bioinspired structures
,”
Adv. Mater.
30
(
52
),
1800940
(
2018
).
4.
G.
Dong
,
D.
Tessier
, and
Y. F.
Zhao
, “
Design of shoe soles using lattice structures fabricated by additive manufacturing
,”
Proc. Int. Conf. Eng. Des.
1
(
1
),
719
728
(
2019
).
5.
Y.
Zhang
,
M.-T.
Hsieh
, and
L.
Valdevit
, “
Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies
,”
Compos. Struct.
263
,
113693
(
2021
).
6.
M. J.
Mirzaali
,
M.
Cruz Saldívar
,
A.
Herranz de la Nava
,
D.
Gunashekar
,
M.
Nouri-Goushki
,
E. L.
Doubrovski
, and
A. A.
Zadpoor
, “
Multi-material 3D printing of functionally graded hierarchical soft-hard composites
,”
Adv. Eng. Mater.
22
(
7
),
1901142
(
2020
).
7.
A. R.
Studart
, “
Additive manufacturing of biologically-inspired materials
,”
Chem. Soc. Rev.
45
(
2
),
359
376
(
2016
).
8.
J.
Giannatsis
and
V.
Dedoussis
, “
Additive fabrication technologies applied to medicine and health care: A review
,”
Int. J. Adv. Manuf. Technol.
40
,
116
127
(
2007
).
9.
J.-R.
Jacquet
,
F.
Ossant
,
F.
Levassort
, and
J.-M.
Gregoire
, “
3-D-printed phantom fabricated by photopolymer jetting technology for high-frequency ultrasound imaging
,”
IEEE Trans. Ultrason, Ferroelect., Freq. Contr.
65
(
6
),
1048
1055
(
2018
).
10.
M.
Bakaric
,
P.
Miloro
,
A.
Javaherian
,
B. T.
Cox
,
B. E.
Treeby
, and
M. D.
Brown
, “
Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz
,”
J. Acoust. Soc. Am.
150
(
4
),
2798
2805
(
2021
).
11.
M.
Ferri
,
J. M.
Bravo
,
J.
Redondo
,
S.
Jiménez-Gambín
,
N.
Jiménez
,
F.
Camarena
, and
J. V.
Sánchez-Pérez
, “
On the evaluation of the suitability of the materials used to 3D print holographic acoustic lenses to correct transcranial focused ultrasound aberrations
,”
Polymers
11
(
9
),
1521
(
2019
).
12.
A.
Tikhonov
,
P.
Evdokimov
,
E.
Klimashina
,
S.
Tikhonova
,
E.
Karpushkin
,
I.
Scherbackov
,
V.
Dubrov
, and
V.
Putlayev
, “
Stereolithographic fabrication of three-dimensional permeable scaffolds from CaP/PEGDA hydrogel biocomposites for use as bone grafts
,”
J. Mech. Behav. Biomed. Mater.
110
,
103922
(
2020
).
13.
M.
Gattin
,
N.
Bochud
,
G.
Rosi
,
Q.
Grossman
,
D.
Ruffoni
, and
S.
Naili
, “
Ultrasonic bandgaps in viscoelastic 1D-periodic media: Mechanical modeling and experimental validation
,”
Ultrasonics
131
,
106951
(
2023
).
14.
M.
Gattin
,
N.
Bochud
,
Q.
Grossman
,
D.
Ruffoni
,
G.
Rosi
, and
S.
Naili
, “
Ultrasound monitoring of multiphase architectured media: Bandgap tracking via the measurement of the reflection coefficient
,”
Appl. Acoust.
217
,
109844
(
2024
).
15.
A.
Aghaei
,
N.
Bochud
,
G.
Rosi
,
Q.
Grossman
,
D.
Ruffoni
, and
S.
Naili
, “
Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling
,”
J. Acoust. Soc. Am.
151
(
3
),
1490
1501
(
2022
).
16.
M.
Gattin
,
N.
Bochud
,
G.
Rosi
,
Q.
Grossman
,
D.
Ruffoni
, and
S.
Naili
, “
Ultrasound characterization of the viscoelastic properties of additively manufactured photopolymer materials
,”
J. Acoust. Soc. Am.
152
(
3
),
1901
1912
(
2022
).
17.
S. I.
Rokhlin
and
W.
Wang
, “
Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials
,”
J. Acoust. Soc. Am.
91
(
6
),
3303
3312
(
1992
).
18.
Y. C.
Chu
and
S. I.
Rokhlin
, “
Comparative analysis of through-transmission ultrasonic bulk wave methods for phase velocity measurements in anisotropic materials
,”
J. Acoust. Soc. Am.
95
(
6
),
3204
3212
(
1994
).
19.
D.
Zhou
,
L.
Peirlinckx
, and
L.
Van Biesen
, “
Identification of parametric models for ultrasonic double transmission experiments on viscoelastic plates
,”
J. Acoust. Soc. Am.
99
(
3
),
1446
1458
(
1996
).
20.
M.
Castaings
,
B.
Hosten
, and
T.
Kundu
, “
Inversion of ultrasonic, plane-wave transmission data in composite plates to infer viscoelastic material properties
,”
NDT&E Int.
33
(
6
),
377
392
(
2000
).
21.
B.
Hosten
, “
Reflection and transmission of acoustic plane waves on an immersed orthotropic and viscoelastic solid layer
,”
J. Acoust. Soc. Am.
89
(
6
),
2745
2752
(
1991
).
22.
L.
Peirlinckx
,
P.
Guillaume
,
R.
Pintelon
, and
L.
Van Biesen
, “
A global system identification approach for the accurate parametric modeling of ultrasonic reflection and transmission experiments
,”
IEEE Trans. Ultrason, Ferroelect., Freq. Contr.
43
(
4
),
628
639
(
1996
).
23.
B.
Hosten
and
M.
Castaings
, “
Comments on the ultrasonic estimation of the viscoelastic properties of anisotropic materials
,”
Compos. Part A Appl. Sci. Manuf.
39
(
6
),
1054
1058
(
2008
).
24.
A. I.
Lavrentyev
and
S. I.
Rokhlin
, “
Determination of elastic moduli, density, attenuation, and thickness of a layer using ultrasonic spectroscopy at two angles
,”
J. Acoust. Soc. Am.
102
(
6
),
3467
3477
(
1997
).
25.
E.
Siryabe
,
M.
Rénier
,
A.
Meziane
,
J.
Galy
, and
M.
Castaings
, “
Apparent anisotropy of adhesive bonds with weak adhesion and non-destructive evaluation of interfacial properties
,”
Ultrasonics
79
,
34
51
(
2017
).
26.
L.
Zorzetto
,
L.
Andena
,
F.
Briatico-Vangosa
,
L.
De Noni
,
J.-M.
Thomassin
,
C.
Jérôme
,
Q.
Grossman
,
A.
Mertens
,
R.
Weinkamer
,
M.
Rink
, and
D.
Ruffoni
, “
Properties and role of interfaces in multimaterial 3D printed composites
,”
Sci. Rep.
10
(
1
),
22285
(
2020
).
27.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids I: Free and Guided Propagation
(
Springer Science and Business Media
, Berlin, Germany,
1999
).
28.
S.
Catheline
,
J.-L.
Gennisson
,
G.
Delon
,
M.
Fink
,
R.
Sinkus
,
S.
Abouelkaram
, and
J.
Culioli
, “
Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach
,”
J. Acoust. Soc. Am.
116
(
6
),
3734
3741
(
2004
).
29.
W.
Marczak
, “
Water as a standard in the measurements of speed of sound in liquids
,”
J. Acoust. Soc. Am.
102
(
5
),
2776
2779
(
1997
).
30.
P.
He
, “
Direct measurement of ultrasonic dispersion using a broadband transmission technique
,”
Ultrasonics
37
(
1
),
67
70
(
1999
).
31.
A. H.
Nayfeh
, “
The general problem of elastic wave propagation in multilayered anisotropic media
,”
J. Acoust. Soc. Am.
89
(
4
),
1521
1531
(
1991
).
32.
T. L.
Szabo
and
J.
Wu
, “
A model for longitudinal and shear wave propagation in viscoelastic media
,”
J. Acoust. Soc. Am.
107
(
5
),
2437
2446
(
2000
).
33.
M.
O'Donnell
,
E. T.
Jaynes
, and
J. G.
Miller
, “
Kramers-Kronig relationship between ultrasonic attenuation and phase velocity
,”
J. Acoust. Soc. Am.
69
(
3
),
696
701
(
1981
).
34.
S.
Guo
,
M.
Rébillat
, and
N.
Mechbal
, “
Prediction of frequency and spatially dependent attenuation of guided waves propagating in mounted and unmounted A380 parts made up of anisotropic viscoelastic composite laminates
,”
Struct. Health. Monit.
22
(
2
),
1326
1352
(
2023
).
35.
Q.
Baudis
,
T.
Valier-Brasier
, and
R.
Wunenburger
, “
Thorough ultrasonic rheology of soft, visco-elastic materials: Example of crosslinked Polyurethane elastomer
,”
Ultrasonics
137
,
107166
(
2024
).
36.
A.-S.
Poudrel
,
P.
Margerit
, and
N.
Bochud
, “
Theta-scan
,” https://zenodo.org/records/11102338.
You do not currently have access to this content.