A series of Bayesian adaptive procedures to estimate loudness growth across a wide frequency range from individual listeners was developed, and these procedures were compared. Simulation experiments were conducted based on multinomial psychometric functions for categorical loudness scaling across ten test frequencies estimated from 61 listeners with normal hearing and 87 listeners with sensorineural hearing loss. Adaptive procedures that optimized the stimulus selection based on the interim estimates of two types of category-boundary models were tested. The first type of model was a phenomenological model of category boundaries adopted from previous research studies, while the other type was a data-driven model derived from a previously collected set of categorical loudness scaling data. An adaptive procedure without Bayesian active learning was also implemented. Results showed that all adaptive procedures provided convergent estimates of the loudness category boundaries and equal-loudness contours between 250 and 8000 Hz. Performing post hoc model fitting, using the data-driven model, on the collected data led to satisfactory accuracies, such that all adaptive procedures tested in the current study, independent of modeling approach and stimulus-selection rules, were able to provide estimates of the equal-loudness-level contours between 20 and 100 phons with root-mean-square errors typically under 6 dB after 100 trials.

1.
Agresti
,
A.
(
1999
). “
Modelling ordered categorical data: Recent advances and future challenges
,”
Stat. Med.
18
,
2191
2207
.
2.
Allen
,
J. B.
,
Hall
,
J. L.
, and
Jeng
,
P. S.
(
1990
). “
Loudness growth in 1/2‐octave bands (LGOB)—A procedure for the assessment of loudness
,”
J. Acoust. Soc. Am.
88
,
745
753
.
3.
Al-Salim
,
S. C.
,
Kopun
,
J. G.
,
Neely
,
S. T.
,
Jesteadt
,
W.
,
Stiegemann
,
B.
, and
Gorga
,
M. P.
(
2010
). “
Reliability of categorical loudness scaling and its relation to threshold
,”
Ear Hear.
31
,
567
578
.
4.
Brand
,
T.
, and
Hohmann
,
V.
(
2002
). “
An adaptive procedure for categorical loudness scaling
,”
J. Acoust. Soc. Am.
112
,
1597
1604
.
5.
Buus
,
S.
, and
Florentine
,
M.
(
2002
). “
Growth of loudness in listeners with cochlear hearing losses: Recruitment reconsidered
,”
J. Assoc. Res. Otolaryngol.
3
,
120
139
.
6.
Cox
,
M.
, and
de Vries
,
B.
(
2021
). “
Bayesian pure-tone audiometry through active learning under informed priors
,”
Front. Digit. Health
3
,
723348
.
7.
Cox
,
R. M.
(
1995
). “
Using loudness data for hearing aid selection: The IHAFF approach
,”
Hear. J.
48
,
10
39
.
8.
Cox
,
R. M.
,
Alexander
,
G. C.
,
Taylor
,
I. M.
, and
Gray
,
G. A.
(
1997
). “
The contour test of loudness perception
,”
Ear Hear.
18
,
388
400
.
9.
Doire
,
C. S.
,
Brookes
,
M.
, and
Naylor
,
P. A.
(
2017
). “
Robust and efficient Bayesian adaptive psychometric function estimation
,”
J. Acoust. Soc. Am.
141
,
2501
2512
.
10.
Dorr
,
M.
,
Lesmes
,
L. A.
,
Elze
,
T.
,
Wang
,
H.
,
Lu
,
Z. L.
, and
Bex
,
P. J.
(
2017
). “
Evaluation of the precision of contrast sensitivity function assessment on a tablet device
,”
Sci. Rep.
7
,
46706
.
11.
Du
,
Y.
,
Shen
,
Y.
,
Wu
,
X.
, and
Chen
,
J.
(
2019
). “
The effect of speech material on the band importance function for Mandarin Chinese
,”
J. Acous. Soc. Am.
146
(
1
),
445
457
.
12.
Elberling
,
C.
(
1999
). “
Loudness scaling revisited
,”
J. Am. Acad. Audiol.
10
,
248
260
.
13.
Fahrmeir
,
L.
(
1992
). “
Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models
,”
J. Am. Stat. Assoc.
87
,
501
509
.
14.
Florentine
,
M.
,
Buus
,
S.
, and
Hellman
,
R. P.
(
1997
). “
A model of loudness summation applied to high-frequency hearing loss
,” in
Modeling Sensorineural Hearing Loss
, edited by
W.
Jesteadt
(
Routledge
,
New York
), Chap. 11.
15.
Fowler
,
E. P.
(
1936
). “
A method for the early detection of otosclerosis: A study of sounds well above threshold
,”
Arch. Otolaryngol.
24
,
731
741
.
16.
Fritsch
,
F. N.
, and
Carlson
,
R. E.
(
1980
). “
Monotone piecewise cubic interpolation
,”
SIAM J. Numer. Anal.
17
,
238
246
.
17.
Fultz
,
S. E.
,
Neely
,
S. T.
,
Kopun
,
J. G.
, and
Rasetshwane
,
D. M.
(
2020
). “
Maximum expected information approach for improving efficiency of categorical loudness scaling
,”
Front. Psychol.
11
,
578352
.
18.
Hellman
,
R. P.
(
1994
). “
Relation between the growth of loudness and high-frequency excitation
,”
J. Acoust. Soc. Am.
96
,
2655
2663
.
19.
ISO 226:2003
(
2003
). “
Acoustics—normal equal-loudness-level contours
” (International Organization for Standardization, Geneva, Switzerland).
20.
ISO 16832:2006
(
2006
). “
Acoustics—loudness scaling by means of categories
” (International Organization for Standardization, Geneva, Switzerland).
21.
Jesteadt
,
W.
(
1980
). “
An adaptive procedure for subjective judgements
,”
Atten. Percept. Psychophys.
28
,
85
88
.
22.
Kiessling
,
J.
,
Steffens
,
T.
, and
Wagner
,
I.
(
1993
). “
On the clinical applicability of loudness scaling
,”
Audiologische Akustik
32
,
100
115
.
23.
Kinkel
,
M.
(
2007
). “
The new ISO 16832 ‘Acoustics–loudness scaling by means of categories
,’ ” in
Proceedings of the 8th EFAS Congress/10th Congress of the German Society of Audiology
, June 6–9, 2007, Heidelberg, Germany, pp.
1
4
.
24.
Kontsevich
,
L. L.
, and
Tyler
,
C. W.
(
1999
). “
Bayesian adaptive estimation of psychometric slope and threshold
,”
Vis. Res.
39
,
2729
2737
.
25.
Lesmes
,
L. A.
,
Jeon
,
S. T.
,
Lu
,
Z. L.
, and
Dosher
,
B. A.
(
2006
). “
Bayesian adaptive estimation of threshold versus contrast external noise functions: The quick TvC method
,”
Vis. Res.
46
,
3160
3176
.
26.
Lesmes
,
L. A.
,
Lu
,
Z. L.
,
Baek
,
J.
, and
Albright
,
T. D.
(
2010
). “
Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method
,”
J. Vis.
10
,
17.1
17.21
.
27.
Marozeau
,
J.
(
2010
). “
Models of loudness
,” in
Loudness
, edited by
M.
Florentine
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
261
284
.
28.
Miskolczy–Fodor
,
F.
(
1960
). “
Relation between loudness and duration of tonal pulses. III. Response in cases of abnormal loudness function
,”
J. Acoust. Soc. Am.
32
,
486
492
.
29.
Moore
,
B. C.
(
2014
). “
Development and current status of the ‘Cambridge’ loudness models
,”
Trends Hear.
18
,
2331216514550620
.
30.
Moore
,
B. C.
, and
Glasberg
,
B. R.
(
1983
). “
Suggested formulae for calculating auditory‐filter bandwidths and excitation patterns
,”
J. Acoust. Soc. Am.
74
,
750
753
.
31.
Moore
,
B. C.
, and
Glasberg
,
B. R.
(
1997
). “
A model of loudness perception applied to cochlear hearing loss
,”
Aud. Neurosci.
3
,
289
311
.
32.
Moore
,
B. C.
, and
Glasberg
,
B. R.
(
2004
). “
A revised model of loudness perception applied to cochlear hearing loss
,”
Hear. Res.
188
,
70
88
.
33.
Oetting
,
D.
,
Bach
,
J. H.
,
Krueger
,
M.
,
Vormann
,
M.
,
Schulte
,
M.
, and
Meis
,
M.
(
2019
). “
Subjective loudness ratings of vehicle noise with the hearing aid fitting methods NAL-NL2 and trueLOUDNESS
,” in
Proceedings of the International Symposium on Auditory and Audiological Research
, August 21–23, Nyborg, Denmark, pp.
289
296
, available at https://proceedings.isaar.eu/index.php/isaarproc/about.
34.
Oetting
,
D.
,
Brand
,
T.
, and
Ewert
,
S. D.
(
2014
). “
Optimized loudness-function estimation for categorical loudness scaling data
,”
Hear. Res.
316
,
16
27
.
35.
Rasetshwane
,
D. M.
,
Trevino
,
A. C.
,
Gombert
,
J. N.
,
Liebig-Trehearn
,
L.
,
Kopun
,
J. G.
,
Jesteadt
,
W.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
2015
). “
Categorical loudness scaling and equal-loudness contours in listeners with normal hearing and hearing loss
,”
J. Acoust. Soc. Am.
137
,
1899
1913
.
36.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
(
2006
).
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA
).
37.
Ricketts
,
T. A.
(
1996
). “
Fitting hearing aids to individual loudness-perception measures
,”
Ear Hear.
17
,
124
132
.
38.
Schlittenlacher
,
J.
, and
Moore
,
B. C.
(
2020
). “
Fast estimation of equal-loudness contours using Bayesian active learning and direct scaling
,”
Acoust. Sci. Technol.
41
,
358
360
.
39.
Schlittenlacher
,
J.
,
Turner
,
R. E.
, and
Moore
,
B. C.
(
2020
). “
Application of Bayesian active learning to the estimation of auditory filter shapes using the notched-noise method
,”
Trends Hear.
24
,
233121652095299
.
40.
Shen
,
Y.
, and
Kern
,
A. B.
(
2018
). “
An analysis of individual differences in recognizing monosyllabic words under the Speech Intelligibility Index framework
,”
Trends Hear.
22
,
2331216518761773
.
41.
Shen
,
Y.
,
Kern
,
A. B.
, and
Richards
,
V. M.
(
2019
). “
Toward routine assessments of auditory filter shape
,”
J. Speech. Lang. Hear. Res.
62
,
442
455
.
42.
Shen
,
Y.
, and
Langley
,
L.
(
2023
). “
Spectral weighting for sentence recognition in steady-state and amplitude-modulated noise
,”
JASA Express Lett.
3
,
055202
.
43.
Shen
,
Y.
, and
Richards
,
V. M.
(
2013a
). “
Temporal modulation transfer function for efficient assessment of auditory temporal resolution
,”
J. Acoust. Soc. Am.
133
,
1031
1042
.
44.
Shen
,
Y.
, and
Richards
,
V. M.
(
2013b
). “
Bayesian adaptive estimation of the auditory filter
,”
J. Acoust. Soc. Am.
134
,
1134
1145
.
45.
Shen
,
Y.
,
Sivakumar
,
R.
, and
Richards
,
V. M.
(
2014
). “
Rapid estimation of high-parameter auditory-filter shapes
,”
J. Acoust. Soc. Am.
136
,
1857
1868
.
46.
Shen
,
Y.
,
Yun
,
D.
, and
Liu
,
Y.
(
2020
). “
Individualized estimation of the Speech Intelligibility Index for short sentences: Test-retest reliability
,”
J. Acoust. Soc. Am.
148
,
1647
1661
.
47.
Shen
,
Y.
,
Zhang
,
C.
, and
Zhang
,
Z.
(
2018
). “
Feasibility of interleaved Bayesian adaptive procedures in estimating the equal-loudness contour
,”
J. Acoust. Soc. Am.
144
,
2363
2374
.
48.
Song
,
X. D.
,
Garnett
,
R.
, and
Barbour
,
D. L.
(
2017
). “
Psychometric function estimation by probabilistic classification
,”
J. Acoust. Soc. Am.
141
,
2513
2525
.
49.
Song
,
X. D.
,
Sukesan
,
K. A.
, and
Barbour
,
D. L.
(
2018
). “
Bayesian active probabilistic classification for psychometric field estimation
,”
Atten. Percept. Psychophys.
80
,
798
812
.
50.
Song
,
X. D.
,
Wallace
,
B. M.
,
Gardner
,
J. R.
,
Ledbetter
,
N. M.
,
Weinberger
,
K. Q.
, and
Barbour
,
D. L.
(
2015
). “
Fast, continuous audiogram estimation using machine learning
,”
Ear Hear.
36
,
e326
e335
.
51.
Steinberg
,
J. C.
, and
Gardner
,
M. B.
(
1937
). “
The dependence of hearing impairment on sound intensity
,”
J. Acoust. Soc. Am.
9
,
11
23
.
52.
Trevino
,
A. C.
,
Jesteadt
,
W.
, and
Neely
,
S. T.
(
2016
). “
Development of a multi-category psychometric function to model categorical loudness measurements
,”
J. Acoust. Soc. Am.
140
,
2571
2583
.
53.
Watson
,
A. B.
(
2017
). “
QUEST+: A general multidimensional Bayesian adaptive psychometric method
,”
J. Vis.
17
,
1
27
.
54.
Zwicker
,
E.
, and
Fastl
,
H.
(
2013
).
Psychoacoustics: Facts and Models
(
Springer Berlin
,
Heidelberg
).

Supplementary Material

You do not currently have access to this content.