Koopman operator theory has gained interest as a framework for transforming nonlinear dynamics on the state space into linear dynamics on abstract function spaces, which preserves the underlying nonlinear dynamics of the system. These spaces can be approximated through data-driven methodologies, which enables the application of classical linear control strategies to nonlinear systems. Here, a Koopman linear quadratic regulator (KLQR) was used to acoustically control the nonlinear dynamics of a single spherical bubble, as described by the well-known Rayleigh–Plesset equation, with several objectives: (1) simple harmonic oscillation at amplitudes large enough to incite nonlinearities, (2) stabilization of the bubble at a nonequilibrium radius, and (3) periodic and quasiperiodic oscillation with multiple frequency components of arbitrary amplitude. The results demonstrate that the KLQR controller can effectively drive a spherical bubble to radially oscillate according to prescribed trajectories using both broadband and single-frequency acoustic driving. This approach has several advantages over previous efforts to acoustically control bubbles, including the ability to track arbitrary trajectories, robustness, and the use of linear control methods, which do not depend on initial guesses.

1.
W.
Lauterborn
, “
Numerical investigation of nonlinear oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
59
(
2
),
283
293
(
1976
).
2.
W.
Lauterborn
and
U.
Parlitz
, “
Methods of chaos physics and their application to acoustics
,”
J. Acoust. Soc. Am.
84
(
6
),
1975
1993
(
1988
).
3.
U.
Parlitz
,
V.
Englisch
,
C.
Scheffczyk
, and
W.
Lauterborn
, “
Bifurcation structure of bubble oscillators
,”
J. Acoust. Soc. Am.
88
(
2
),
1061
1077
(
1990
).
4.
M.
Fyrillas
and
A. J.
Szeri
, “
Control of ultra- and subharmonic resonances
,”
J. Nonlinear Sci.
8
,
131
159
(
1998
).
5.
A. J.
Reddy
and
A. J.
Szeri
, “
Optimal pulse-inversion imaging for microsphere contrast agents
,”
Ultrasound Med. Biol.
28
(
4
),
483
494
(
2002
).
6.
M.
Wyczalkowski
and
A. J.
Szeri
, “
Optimization of acoustic scattering from dual-frequency driven microbubbles at the difference frequency
,”
J. Acoust. Soc. Am.
113
(
6
),
3073
3079
(
2003
).
7.
J. M.
Carroll
,
L. K.
Lauderbaugh
, and
M. L.
Calvisi
, “
Application of nonlinear sliding mode control to ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
134
(
1
),
216
222
(
2013
).
8.
M.
Najafi
,
M.
Azadegan
, and
M. T.
Beheshti
, “
Stability analysis and sliding mode control of a single spherical bubble dynamics
,” in
2016 American Control Conference (ACC)
, Boston, MA (
IEEE
,
New York
,
2016
), pp.
5050
5055
.
9.
E.
Badfar
and
M. A.
Ardestani
, “
Utilizing sliding mode control for the cavitation phenomenon and using the obtaining result in modern medicine
,”
SN Appl. Sci.
1
,
1419
(
2019
).
10.
E.
Badfar
and
M. A.
Ardestani
, “
Robust versus optimal control for the radius of spherical bubble in a perfect incompressible liquid, LMI optimization approach
,”
Int. J. Dyn. Control
8
(
2
),
497
507
(
2020
).
11.
B.
Rahmatizadeh
,
M. T. H.
Beheshti
,
M.
Azadegan
, and
M.
Najafi
, “
Stability analysis and sliding mode control of a single spherical bubble described by Keller–Miksis equation
,”
Int. J. Dyn. Control
9
(
4
),
1757
1764
(
2021
).
12.
R.
Mettin
,
P.
Frommhold
,
X.
Xi
,
F.
Cegla
,
H.
Okorn-Schmidt
,
A.
Lippert
, and
F.
Holsteyns
, “
Acoustic bubbles: Control and interaction with particles adhered to a solid substrate
,” in
Ultra Clean Processing of Semiconductor Surfaces XI: Solid State Phenomena
(
Trans Tech Publications, Ltd
.,
Bäch, Switzerland
,
2013
), Vol.
195
, pp.
161
164
.
13.
F.
Hegedűs
,
W.
Lauterborn
,
U.
Parlitz
, and
R.
Mettin
, “
Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving: GPU accelerated topological analysis of a bubble in water
,”
Nonlinear Dyn.
94
,
273
293
(
2018
).
14.
F.
Hegedűs
,
P.
Krähling
,
M.
Aron
,
W.
Lauterborn
,
R.
Mettin
, and
U.
Parlitz
, “
Feedforward attractor targeting for non-linear oscillators using a dual-frequency driving technique
,”
Chaos
30
(
7
),
073123
(
2020
).
15.
J. B.
Keller
and
M.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
(
2
),
628
633
(
1980
).
16.
V.
Utkin
and
H.
Lee
, “
Chattering problem in sliding mode control systems
,” in
International Workshop on Variable Structure Systems, 2006, VSS'06
, Alghero, Italy (
IEEE
,
New York
,
2006
), pp.
346
350
.
17.
F. F.
Arifi
and
M. L.
Calvisi
, “
Optimal control of encapsulated microbubbles for biomedicine
,” in
The 11th International Symposium on Cavitation (CAV2021)
, Daejon, Korea (
2021
), pp.
702
706
, available at http://cav2021.org/wp-content/uploads/2021/07/P00208_optimize-2.pdf.
18.
F. F.
Arifi
, “
Stability analysis and optimal control of the nonspherical oscillation of encapsulated microbubbles for biomedicine
,” Ph.D. thesis,
University of Colorado Colorado Springs
,
Colorado Springs, CO
,
2020
.
19.
C. W.
Rowley
,
I.
Mezic
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
20.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
21.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
(
2
),
391
421
(
2014
).
22.
H.
Arbabi
and
I.
Mezić
, “
Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator
,”
SIAM J. Appl. Dyn. Syst.
16
(
4
),
2096
2126
(
2017
).
23.
M.
Haseli
and
J.
Cortés
, “
Approximating the Koopman operator using noisy data: Noise-resilient extended dynamic mode decomposition
,” in
2019 American Control Conference (ACC)
, Philadelphia, PA (
IEEE
,
New York
,
2019
), pp.
5499
5504
.
24.
M. O.
Williams
,
C. W.
Rowley
,
I.
Mezić
, and
I. G.
Kevrekidis
, “
Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis
,”
EPL
109
(
4
),
40007
(
2015
).
25.
E.
Kaiser
,
N. J.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of Koopman eigenfunctions for control
,”
Mach. Learn. Sci. Technol.
2
(
3
),
035023
(
2021
).
26.
E.
Kaiser
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
,”
Proc. R. Soc. A
474
(
2219
),
20180335
(
2018
).
27.
M.
Korda
and
I.
Mezić
, “
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
,”
Automatica
93
,
149
160
(
2018
).
28.
M.
Korda
and
I.
Mezić
, “
Optimal construction of Koopman eigenfunctions for prediction and control
,”
IEEE Trans. Automat. Contr.
65
(
12
),
5114
5129
(
2020
).
29.
E.
Yeung
,
Z.
Liu
, and
N. O.
Hodas
, “
A Koopman operator approach for computing and balancing Gramians for discrete time nonlinear systems
,” in
2018 Annual American Control Conference (ACC)
, Milwaukee, WI (
American Automatic Control Council
,
2018
), pp.
337
344
.
30.
Z.
Liu
,
S.
Kundu
,
L.
Chen
, and
E.
Yeung
, “
Decomposition of nonlinear dynamical systems using Koopman Gramians
,” in
2018 Annual American Control Conference (ACC)
, Milwaukee, WI (
American Automatic Control Council
,
2018
), pp.
4811
4818
.
31.
A.
Surana
, “
Koopman operator based observer synthesis for control-affine nonlinear systems
,” in
2016 IEEE 55th Conference on Decision and Control (CDC)
, Las Vegas, NV (
IEEE
,
New York
,
2016
), pp.
6492
6499
.
32.
A.
Surana
and
A.
Banaszuk
, “
Linear observer synthesis for nonlinear systems using Koopman operator framework
,”
IFAC-PapersOnLine
49
(
18
),
716
723
(
2016
).
33.
M.
Netto
and
L.
Mili
, “
A robust data-driven Koopman Kalman filter for power systems dynamic state estimation
,”
IEEE Trans. Power Syst.
33
(
6
),
7228
7237
(
2018
).
34.
J.
Hogg
,
M.
Fonoberova
, and
I.
Mezić
, “
Exponentially decaying modes and long-term prediction of sea ice concentration using Koopman mode decomposition
,”
Sci. Rep.
10
(
1
),
16313
(
2020
).
35.
G.
Froyland
,
D.
Giannakis
,
B. R.
Lintner
,
M.
Pike
, and
J.
Slawinska
, “
Spectral analysis of climate dynamics with operator-theoretic approaches
,”
Nat. Commun.
12
(
1
),
6570
(
2021
).
36.
A. M.
Avila
and
I.
Mezić
, “
Data-driven analysis and forecasting of highway traffic dynamics
,”
Nat. Commun.
11
,
2090
(
2020
).
37.
M.
Korda
,
Y.
Susuki
, and
I.
Mezić
, “
Power grid transient stabilization using Koopman model predictive control
,”
IFAC-PapersOnLine
51
(
28
),
297
302
(
2018
).
38.
B. W.
Brunton
,
L. A.
Johnson
,
J. G.
Ojemann
, and
J. N.
Kutz
, “
Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
,”
J. Neurosci. Methods
258
,
1
15
(
2016
).
39.
N.
Marrouch
,
J.
Slawinska
,
D.
Giannakis
, and
H. L.
Read
, “
Data-driven Koopman operator approach for computational neuroscience
,”
Ann. Math. Artif. Intell.
88
(
11
),
1155
1173
(
2020
).
40.
M.
Budišić
,
R.
Mohr
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
(
4
),
047510
(
2012
).
41.
G.
Mamakoukas
,
M.
Castano
,
X.
Tan
, and
T.
Murphey
, “
Local Koopman operators for data-driven control of robotic systems
,” in
Robotics: Science and Systems XV
, Freiburg im Breisgau, Germany (
2019
).
42.
M. L.
Castaño
,
A.
Hess
,
G.
Mamakoukas
,
T.
Gao
,
T.
Murphey
, and
X.
Tan
, “
Control-oriented modeling of soft robotic swimmer with Koopman operators
,” in
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
, Boston, MA (
IEEE
,
New York
,
2020
), pp.
1679
1685
.
43.
J. L.
Proctor
and
P. A.
Eckhoff
, “
Discovering dynamic patterns from infectious disease data using dynamic mode decomposition
,”
Int. Health
7
(
2
),
139
145
(
2015
).
44.
S. L.
Brunton
,
M.
Budišić
,
E.
Kaiser
, and
J. N.
Kutz
, “
Modern Koopman theory for dynamical systems
,”
SIAM Rev.
64
(
2
),
229
340
(
2022
).
45.
S. E.
Otto
and
C. W.
Rowley
, “
Koopman operators for estimation and control of dynamical systems
,”
Annu. Rev. Controlled Robot. Auton. Syst.
4
,
59
87
(
2021
).
46.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
New York
,
2014
). pp.
36
and
91
.
47.
I.
Mezic
, “
Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space geometry
,”
J. Nonlinear Sci.
30
,
2091
2145
(
2020
).
48.
B. O.
Koopman
, “
Hamiltonian systems and transformation in Hilbert space
,”
Proc. Natl. Acad. Sci. U.S.A.
17
(
5
),
315
318
(
1931
).
49.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
15
),
3932
3937
(
2016
).
50.
A. J.
Gibson
,
M. L.
Calvisi
, and
X. C.
Yee
, “
Koopman linear quadratic regulator using complex eigenfunctions for nonlinear dynamical systems
,”
SIAM J. Appl. Dyn. Syst.
21
(
4
),
2463
2486
(
2022
).
51.
A. H.
Nayfeh
and
W. S.
Saric
, “
Non-linear acoustic response of a spherical bubble
,”
J. Sound Vib.
30
(
4
),
445
453
(
1973
).
52.
S.
Shikada
and
H.
Yoshimura
, “
Nonlinear phenomena in Rayleigh–Plesset equations for single bubble dynamics
,”
AIP Conf. Proc.
1376
,
552
554
(
2011
).
53.
A. H.
Nayfeh
and
D. T.
Mook
,
Nonlinear Oscillations
(
John Wiley & Sons
,
Hoboken, NJ
,
2008
).
54.
I.
Kovacic
,
Nonlinear Oscillations: Exact Solutions and Their Approximations
(
Springer
,
New York
,
2020
).
You do not currently have access to this content.