During NASA X-59 quiet supersonic aircraft community response tests, low-boom recordings will contain contaminating noise from instrumentation and ambient acoustical sources. This noise can inflate sonic boom perception metrics by several decibels. This paper discusses the development and comparison of robust lowpass filtering techniques for removing contaminating noise effects from low-boom recordings. The two filters are a time-domain Butterworth-magnitude filter and a frequency-domain Brick Wall filter. Both filters successfully reduce noise contamination in metric calculations for simulated data with real-world contaminating noise and demonstrate comparable performance to a modified ISO 11204 correction. The Brick Wall filter's success indicates that further attempts to match boom spectrum high-frequency roll-off beyond the contaminating noise floor are unnecessary and have marginal improvements on final metric calculations. Additionally, the Butterworth filter removes statistical correlation between ambient and boom levels for a real-world flight campaign, adding evidence that these techniques also work on other boom shapes. Overall, both filters can produce accurate metric calculations with only a few hundred hertz of positive signal-to-noise ratio. This work describes methods for accurate metric calculations in the presence of moderate noise contamination that should benefit X-59 and future low-boom supersonic aircraft testing.

1.
NASA
, “
NASA Quesst mission webpage
,” https://www.nasa.gov/X59/ (
2023
) (Last viewed June 12, 2024).
2.
L. P.
Ozoroski
,
G. H.
Shah
,
P. G.
Coen
,
A.
Loubeau
, and
J.
Rathsam
, “
NASA Community Test Workshop 2
,” NASA Document ID: 20210025956,
NASA Langley Research Center
(
2021
).
3.
J.
Rathsam
, “
An overview of NASA's low boom flight demonstration
,”
Defense and Aerospace Test and Analysis Workshop Presentation
, NASA Document ID: 20220005452 (
2022
).
4.
A.
Loubeau
and
J.
Page
, “
Human perception of sonic boom from supersonic aircraft
,”
Acoust. Today
14
(
3
),
23
30
(
2018
), available at https://acousticstoday.org/human-perception-sonic-booms-supersonic-aircraft-alexandra-loubeau-juliet-page/.
5.
A.
Loubeau
,
Y.
Naka
,
B. G.
Cook
,
V. W.
Sparrow
, and
J. M.
Morgenstern
, “
A new evaluation of noise metrics for sonic booms using existing data
,”
AIP Conf. Proc.
1685
,
090015
(
2015
).
6.
A.
Loubeau
,
S. R.
Wilson
, and
J.
Rathsam
, “
Updated evaluation of sonic boom noise metrics
,”
J. Acoust. Soc. Am.
144
(
1706
),
1706
(
2018
).
7.
S. S.
Stevens
, “
Perceived level of noise by Mark VII and decibels (E)
,”
J. Acoust. Soc. Am.
51
(
2B
),
575
601
(
1972
).
8.
K. P.
Shepherd
and
B. M.
Sullivan
, “
A loudness calculation procedure applied to shaped sonic booms
,” NASA-TP-3134,
NASA Langley Research Center
(
1991
).
9.
J. A.
Page
,
K. K.
Hodgdon
,
P.
Krecker
,
R.
Cowart
,
C.
Hobbs
,
C.
Wilmer
,
C.
Koening
,
T.
Homes
,
T.
Gaugler
,
D. L.
Shumway
,
J. L.
Rosenberger
, and
D.
Philips
, “
Waveforms and sonic boom perception and response (WSPR): Low-boom community response progam pilot test design, execution, and analysis
,” NASA/CR-2014-218180,
NASA Langley Research Center
(
2014
).
10.
D. J.
Maglieri
,
P. J.
Bobbitt
,
K. J.
Plotkin
,
K. P.
Shepherd
,
P. G.
Coen
, and
D. M.
Richwine
, “
Sonic boom six decades of research
,” NASA/SP-2014-622,
NASA Langley Research Center
,
Hampton, Virginia
(
2014
).
11.
J. A.
Page
,
K. K.
Hodgdon
,
R. P.
Hunte
,
D. E.
Davis
,
T. A.
Gaugler
,
R.
Downs
,
R. A.
Cowart
,
D. J.
Maglieri
,
C.
Hobbs
,
G.
Baker
,
M.
Collmar
,
K. A.
Bradley
,
B.
Sonak
,
D.
Crom
, and
C.
Cutler
, “
Quiet supersonic flights 2018 (QSF18) test: Galveston, Texas risk reduction for future community testing with a low-boom flight demonstration vehicle
,” NASA/CR–2020-220589,
NASA Langley Research Center
,
Hampton, Virginia
(
2020
).
12.
K. L.
Gee
,
D. J.
Novakovich
,
L. T.
Mathews
,
M. C.
Anderson
, and
R. D.
Rasband
, “
Development of a weather-robust ground-based system for sonic boom measurements
,” NASA/CR-20205001870,
NASA Langley Research Center
(
2020
).
13.
M. C.
Anderson
,
K. L.
Gee
,
D. J.
Novakovich
,
R. D.
Rasband
,
L. T.
Mathews
,
J. T.
Durrant
,
K. M.
Leete
, and
A.
Loubeau
, “
High-fidelity sonic boom measurements using weather-robust measurement equipment
,”
Proc. Mtgs. Acoust.
39
(
1
),
040005
(
2022
).
14.
K.
Pedersen
,
M. K.
Transtrum
,
K. L.
Gee
,
S. V.
Lympany
,
M. M.
James
, and
A. R.
Salton
, “
Validating two geospatial models of continental-scale environmental sound leves
,”
JASA Express Lett.
1
,
122401
(
2021
).
15.
W. J.
Doebler
, “
Estimated ambient sonic boom metric levels and X-59 signal-to-noise ratios across the USA
,”
Proc. Mtgs. Acoust.
42
,
040003
(
2020
).
16.
J.
Klos
, “
Recommendations for using noise monitors to estimate noise exposure during X-59 community tests
,” NASA/TM-20205007926,
NASA Langley Research Center
,
Hampton, Virginia
(November,
2020
).
17.
J.
Klos
, “
An adaptation of ISO 11204 using customized correction grades to mitigate ambient noise effects when computing sonic boom loudness levels
,” NASA/TM-20220010779,
NASA Langley Research Center
(
2022
).
18.
ISO11204:2010
, “
Acoustics—Noise emitted by machinery and equipment determination of emission sound pressure levels at a work station and at other specified positions applying accurate environmental corrections
” (National Organization for Standardization, Geneva, Switzerland,
2010
).
19.
The MathWorks, Inc.
, “
MATLAB r2022a
” (
2022
).
20.
S. K.
Rallabhandi
and
A.
Loubeau
, “
Summary of propagation cases of the third AIAA sonic boom prediction workshop
,”
J. Aircraft
59
(
3
),
578
594
(
2022
).
21.
W. J.
Doebler
,
S. R.
Wilson
,
A.
Loubeau
, and
V. W.
Sparrow
, “
Simulation and regression modeling of NASA's X-59 low-boom carpets across america
,”
J. Aircraft
60
(
2
),
509
520
(
2022
).
22.
M. R.
Cook
,
K. L.
Gee
,
M. K.
Transtrum
,
S. V.
Lympany
, and
M.
Calton
, “
Automatic classification and reduction of wind noise in spectral data
,”
JASA Express Lett.
1
(
063602
),
063602
(
2021
).
You do not currently have access to this content.