This paper investigates the impact of mobility on underwater acoustic communication networks in which the propagation delay is comparable to or larger than the packet duration. An underwater acoustic wireless network, consisting of static and mobile nodes, is studied for its link-layer channel utilization. Synchronous and asynchronous media access control (MAC) protocols are employed with ALOHA, TDMA (time-division multiple access), and artificial intelligence (AI) agent nodes. The simulation results of a multi-node network show that the asynchronous MAC protocols achieve up to 6.66× higher channel utilization than synchronous protocols by allowing time slots to be shorter than the maximum propagation delay among nodes and permitting asynchronous transmission time. The high mobility of a few mobile nodes also favors asynchronous protocols and increases the overall channel utilization. However, node mobility causes more difficulties for the AI node to learn the environment, which may be ineffective to achieve higher gains in channel utilization.

1.
Akyildiz
,
I. F.
,
Pompili
,
D.
, and
Melodia
,
T.
(
2005
). “
Underwater acoustic sensor networks: Research challenges
,”
Ad hoc Networks
3
(
3
),
257
279
.
2.
Akyildiz
,
I. F.
,
Wang
,
P.
, and
Sun
,
Z.
(
2015
). “
Realizing underwater communication through magnetic induction
,”
IEEE Commun. Mag.
53
(
11
),
42
48
.
3.
Alfouzan
,
F. A.
,
Shahrabi
,
A.
,
Ghoreyshi
,
S. M.
, and
Boutaleb
,
T.
(
2019
). “
A collision-free graph coloring MAC protocol for underwater sensor networks
,”
IEEE Access
7
,
39862
39878
.
4.
Al Guqhaiman
,
A.
,
Akanbi
,
O.
,
Aljaedi
,
A.
, and
Chow
,
C. E.
(
2021
). “
A survey on MAC protocol approaches for underwater wireless sensor networks
,”
IEEE Sens. J.
21
(
3
),
3916
3932
.
5.
Assaf
,
T.
,
Stefanini
,
C.
, and
Dario
,
P.
(
2013
). “
Autonomous underwater biorobots: A wireless system for power transfer
,”
IEEE Robot. Automat. Mag.
20
(
3
),
26
32
.
6.
Beerens
,
S.
,
Ridderinkhof
,
H.
, and
Zimmerman
,
J.
(
1994
). “
An analytical study of chaotic stirring in tidal areas
,”
Chaos, Solitons Fractals
4
(
6
),
1011
1029
.
7.
Campagnaro
,
F.
,
Francescon
,
R.
,
Guerra
,
F.
,
Favaro
,
F.
,
Casari
,
P.
,
Diamant
,
R.
, and
Zorzi
,
M.
(
2016
). “
The DESERT underwater framework v2: Improved capabilities and extension tools
,” in
2016 IEEE Third Underwater Communications and Networking Conference (UComms)
, Lerici, Italy (August 30–September 1, 2016) (
IEEE
,
New York
), pp.
1
5
.
8.
Caruso
,
A.
,
Paparella
,
F.
,
Vieira
,
L. F. M.
,
Erol
,
M.
, and
Gerla
,
M.
(
2008
). “
The meandering current mobility model and its impact on underwater mobile sensor networks
,” in
IEEE INFOCOM 2008—The 27th Conference on Computer Communications
, Phoenix, AZ (April 13–18, 2008) (
IEEE
,
New York
), pp.
221
225
.
9.
Chen
,
W.
,
Guan
,
Q.
,
Yu
,
H.
,
Ji
,
F.
, and
Chen
,
F.
(
2021
). “
Medium access control under space-time coupling in underwater acoustic networks
,”
IEEE Internet Things J.
8
(
15
),
12398
12409
.
10.
Chirdchoo
,
N.
,
Soh
,
W.-S.
, and
Chua
,
K. C.
(
2007
). “
Aloha-based MAC protocols with collision avoidance for underwater acoustic networks
,” in
IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications
, Anchorage, AK (May 6–12, 2007) (
IEEE
,
New York
), pp.
2271
2275
.
11.
Chitre
,
M.
,
Bhatnagar
,
R.
, and
Soh
,
W.-S.
(
2014
). “
UnetStack: An agent-based software stack and simulator for underwater networks
,” in
2014 Oceans–St. John's
, St. John's, NL, Canada (September 14–19, 2014) (
IEEE
,
New York
), pp.
1
10
.
12.
Chitre
,
M.
, and
Soh
,
W. S.
(
2015
). “
Reliable point-to-point underwater acoustic data transfer: To juggle or not to juggle?
,”
IEEE J. Ocean. Eng.
40
(
1
),
93
103
.
13.
Chu
,
Y.
,
Mitchell
,
P. D.
, and
Grace
,
D.
(
2012
). “
ALOHA and Q-learning based medium access control for wireless sensor networks
,” in
2012 International Symposium on Wireless Communication Systems (ISWCS)
, Paris France (August 28–31, 2012) (
IEEE
,
New York
), pp.
511
515
.
14.
Diamant
,
R.
,
Campagnaro
,
F.
,
De Grazia
,
M. D. F.
,
Casari
,
P.
,
Testolin
,
A.
,
Calzado
,
V. S.
, and
Zorzi
,
M.
(
2017
). “
On the relationship between the underwater acoustic and optical channels
,”
IEEE Trans. Wireless Commun.
16
(
12
),
8037
8051
.
15.
Fang
,
D.
,
Li
,
Y.
,
Huang
,
H.
, and
Yin
,
L.
(
2010
). “
A CSMA/CA-based MAC protocol for underwater acoustic networks
,” in
2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM)
, Chengdu, China (September 23–25, 2010) (
IEEE
,
New York
), pp.
1
4
.
16.
Freeman
,
R. L.
(
2005
).
Fundamentals of Telecommunications
(
Wiley
,
Hoboken, NJ
).
17.
Geng
,
X.
, and
Zheng
,
Y. R.
(
2022
). “
Exploiting propagation delay in underwater acoustic communication networks via deep reinforcement learning
,”
IEEE Trans. Neural Networks Learn. Syst.
34
(
12
),
10626
10637
.
18.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
(
2016
).
Deep Learning
(
MIT Press
,
Cambridge, MA
).
19.
Han
,
S.
,
Noh
,
Y.
,
Lee
,
U.
, and
Gerla
,
M.
(
2013
). “
M-FAMA: A multi-session MAC protocol for reliable underwater acoustic streams
,” in
2013 Proceedings IEEE INFOCOM
, Turin, Italy (April 14–19, 2013) (
IEEE
,
New York
), pp.
665
673
.
20.
Han
,
Y.
, and
Fei
,
Y.
(
2016
). “
DAP-MAC: A delay-aware probability-based MAC protocol for underwater acoustic sensor networks
,”
Ad Hoc Networks
48
,
80
92
.
21.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
(
2016
). “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV (June 26–July 1, 2016) (
IEEE
,
New York
), pp.
770
778
.
22.
Hwang
,
H. Y.
, and
Cho
,
H.-S.
(
2016
). “
Throughput and delay analysis of an underwater CSMA/CA protocol with multi-RTS and multi-DATA receptions
,”
Int. J. Distrib. Sensor Networks
12
(
5
),
1
9
.
23.
Jiang
,
S.
(
2017
). “
State-of-the-art medium access control (MAC) protocols for underwater acoustic networks: A survey based on a MAC reference model
,”
IEEE Commun. Surv. Tutorials
20
(
1
),
96
131
.
24.
Kredo
,
K.
, II,
Djukic
,
P.
, and
Mohapatra
,
P.
(
2009
). “
Stump: Exploiting position diversity in the staggered TDMA underwater MAC protocol
,” in
IEEE INFOCOM 2009
, Rio de Janeiro, Brazil (April 19–25, 2009) (
IEEE
,
New York
), pp.
2961
2965
.
25.
Lee
,
C.
, and
Bogue
,
N. M.
(
2011
). “
Advanced development associated with the glider technology transition initiative
,”
Technical Report
, Washington University Seattle Applied Physics Lab.
26.
Li
,
Z.
,
Guo
,
Z.
,
Qu
,
H.
,
Hong
,
F.
,
Chen
,
P.
, and
Yang
,
M.
(
2009
). “
UD-TDMA: A distributed TDMA protocol for underwater acoustic sensor network
,” in
2009 IEEE 6th International Conference on Mobile Ad hoc and Sensor Systems
, Macau (October 12–15, 2009) (
IEEE
,
New York
), pp.
918
923
.
27.
Lmai
,
S.
,
Chitre
,
M.
,
Laot
,
C.
, and
Houcke
,
S.
(
2017
). “
Throughput-efficient super-TDMA MAC transmission schedules in ad hoc linear underwater acoustic networks
,”
IEEE J. Ocean. Eng.
42
(
1
),
156
174
.
28.
Morozs
,
N.
,
Mitchell
,
P.
, and
Zakharov
,
Y. V.
(
2018
). “
TDA-MAC: TDMA without clock synchronization in underwater acoustic networks
,”
IEEE Access
6
,
1091
1108
.
29.
Nguyen
,
H. T.
,
Shin
,
S.-Y.
, and
Park
,
S.-H.
(
2007
). “
State-of-the-art in MAC protocols for underwater acoustics sensor networks
,” in
International Conference on Embedded and Ubiquitous Computing
, Taipei, Taiwan (December 1–4, 2017) (
Springer
,
Berlin, Heidelberg
), pp.
482
493
.
30.
Park
,
S. H.
,
Mitchell
,
P. D.
, and
Grace
,
D.
(
2019
). “
Reinforcement learning based MAC protocol (UW-ALOHA-Q) for underwater acoustic sensor networks
,”
IEEE Access
7
,
165531
165542
.
31.
Park
,
S. H.
,
Mitchell
,
P. D.
, and
Grace
,
D.
(
2021
). “
Reinforcement learning based MAC protocol (UW-ALOHA-QM) for mobile underwater acoustic sensor networks
,”
IEEE Access
9
,
5906
5919
.
32.
Parrish
,
N.
,
Tracy
,
L.
,
Roy
,
S.
,
Arabshahi
,
P.
, and
Fox
,
W. L.
(
2008
). “
System design considerations for undersea networks: Link and multiple access protocols
,”
IEEE J. Select. Areas Commun.
26
(
9
),
1720
1730
.
33.
Peleato
,
B.
, and
Stojanovic
,
M.
(
2007
). “
Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks
,”
IEEE Commun. Lett.
11
(
12
),
1025
1027
.
34.
Petrioli
,
C.
,
Petroccia
,
R.
,
Potter
,
J. R.
, and
Spaccini
,
D.
(
2015
). “
The sunset framework for simulation, emulation and at-sea testing of underwater wireless sensor networks
,”
Ad Hoc Networks
34
,
224
238
.
35.
Pompili
,
D.
,
Melodia
,
T.
, and
Akyildiz
,
I. F.
(
2007
). “
A distributed CDMA medium access control for underwater acoustic sensor networks
,” in
Proceedings of the Mediterranean Ad Hoc Networking Workshop
(
Citeseer
,
Princeton, NJ
).
36.
Purcell
,
M.
,
Gallo
,
D.
,
Packard
,
G.
,
Dennett
,
M.
,
Rothenbeck
,
M.
,
Sherrell
,
A.
, and
Pascaud
,
S.
(
2011
). “
Use of REMUS 6000 AUVs in the search for the air France flight 447
,” in
OCEANS'11 MTS/IEEE KONA
, Waikoloa, HI (September 19–22, 2011) (
IEEE
,
New York
), pp.
1
7
.
37.
Rahman
,
P.
,
Karmaker
,
A.
,
Alam
,
M. S.
,
Hoque
,
M. A.
, and
Lambert
,
W. L.
(
2019
). “
CUMAC-CAM: A channel allocation aware MAC protocol for addressing triple hidden terminal problems in multi-channel UWSNs
,”
SN Appl. Sci.
1
,
1
20
.
38.
Riley
,
G. F.
, and
Henderson
,
T. R.
(
2010
). “
The NS-3 network simulator
,” in
Modeling and Tools for Network Simulation
(
Springer
,
Berlin, Heidelberg
), pp.
15
34
.
39.
Shepard
,
C.
,
Yu
,
H.
,
Anand
,
N.
,
Li
,
E.
,
Marzetta
,
T.
,
Yang
,
R.
, and
Zhong
,
L.
(
2012
). “
Argos: Practical many-antenna base stations
,” in
Proceedings of the 18th Annual International Conference on Mobile Computing and Networking
, Istanbul, Turkey (August 22–26, 2012) (
ACM
,
New York
), pp.
53
64
.
40.
Sitanayah
,
L.
,
Sreenan
,
C. J.
, and
Brown
,
K. N.
(
2010
). “
ER-MAC: A hybrid MAC protocol for emergency response wireless sensor networks
,” in
2010 Fourth International Conference on Sensor Technologies and Applications
, Venice, Italy (July 18–25, 2010) (
IEEE
,
New York
), pp.
244
249
.
41.
Sklar
,
B.
(
2021
).
Digital Communications: Fundamentals and Applications
(
Prentice Hall, Upper Saddle River
,
NJ
).
42.
Stojanovic
,
M.
, and
Preisig
,
J.
(
2009
). “
Underwater acoustic communication channels: Propagation models and statistical characterization
,”
IEEE Commun. Mag.
47
(
1
),
84
89
.
43.
UAN
(
2024
). “
Network simulator 3 UAN framework
,”
available at
https://www.nsnam.org/docs/models/html/uan.html (Last viewed June 5, 2024).
44.
Williamson
,
B. J.
,
Fraser
,
S.
,
Blondel
,
P.
,
Bell
,
P. S.
,
Waggitt
,
J. J.
, and
Scott
,
B. E.
(
2017
). “
Multisensor acoustic tracking of fish and seabird behavior around tidal turbine structures in Scotland
,”
IEEE J. Ocean. Eng.
42
(
4
),
948
965
.
45.
Yu
,
Y.
,
Wang
,
T.
, and
Liew
,
S. C.
(
2019
). “
Deep-reinforcement learning multiple access for heterogeneous wireless networks
,”
IEEE J. Select. Areas Commun.
37
(
6
),
1277
1290
.
46.
Zeng
,
H.
,
Hou
,
Y. T.
,
Shi
,
Y.
,
Lou
,
W.
,
Kompella
,
S.
, and
Midkiff
,
S. F.
(
2017
). “
A distributed scheduling algorithm for underwater acoustic networks with large propagation delays
,”
IEEE Trans. Commun.
65
(
3
),
1131
1145
.
47.
Zheng
,
Y. R.
,
Wu
,
J.
, and
Xiao
,
C.
(
2015
). “
Turbo equalization for single-carrier underwater acoustic communications
,”
IEEE Commun. Mag.
53
(
11
),
79
87
.
48.
Zhuo
,
X.
,
Yang
,
H.
,
Liu
,
M.
,
Wei
,
Y.
,
Yu
,
G.
, and
Qu
,
F.
(
2022
). “
Data concurrent transmission MAC protocol for application oriented underwater acoustic sensor networks
,”
China Commun.
19
(
10
),
220
237
.
You do not currently have access to this content.