In underwater acoustic signal processing, conventional spatial spectrum estimation and the associated direction-of-arrival estimation are often impaired by strong near-field interferences at the same frequency as the far-field target signal, leading to significant performance degradation and even detection failure. In contrast to prevalent near-field interference suppression algorithms that require prior knowledge of near-field interference positions, this paper proposes a super-resolution spatial spectrum reconstruction algorithm designed for more general scenarios where crucial information about the near-field interference, such as positions and magnitudes, is unknown. The proposed algorithm demonstrates its adaptability in mitigating unknown near-field interference and achieves this by leveraging rank constraint-based relaxation and alternating minimization, resulting in an effective spatial spectrum reconstruction strategy. The efficacy of the proposed spatial spectrum reconstruction method in handling strong near-field interference is confirmed through analysis of simulated and synthetic experimental data. It exhibits superiority over traditional competitors in terms of resolution, denoising capabilities, and estimation accuracy. Moreover, it achieves comparable results to algorithms that utilize prior information about near-field interference positions. The enhanced performance remains consistent even in challenging scenarios such as snapshot deficiency and low signal-to-noise ratios.

1.
V.
Ingle
,
S.
Kogon
, and
D.
Manolakis
,
Statistical and Adaptive Signal Processing
(
McGraw-Hill
,
New York
,
1999
).
2.
H. L.
Van Trees
,
Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory
(
John Wiley & Sons
,
Hoboken, NJ
,
2004
).
3.
H.
Lee
,
J.
Ahn
,
Y.
Kim
, and
J.
Chung
, “
Direction-of-arrival estimation of far-field sources under near-field interferences in passive sonar array
,”
IEEE Access
9
,
28413
28420
(
2021
).
4.
J.
Capon
, “
High-resolution frequency-wavenumber spectrum analysis
,”
Proc. IEEE
57
(
8
),
1408
1418
(
1969
).
5.
P.
Stoica
and
A.
Nehorai
, “
MUSIC, maximum likelihood, and Cramer-Rao bound
,”
IEEE Trans. Acoust. Speech Signal Process.
37
(
5
),
720
741
(
1989
).
6.
A. L.
Swindlehurst
and
T.
Kailath
, “
A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm
,”
IEEE Trans. Signal Process.
40
(
7
),
1758
1774
(
1992
).
7.
E. J.
Candès
and
M. B.
Wakin
, “
An introduction to compressive sampling
,”
IEEE Signal Process. Mag.
25
(
2
),
21
30
(
2008
).
8.
Y. C.
Eldar
and
G.
Kutyniok
,
Compressed Sensing: Theory and Applications
(
Cambridge University Press
,
Cambridge, UK
,
2012
).
9.
M. E.
Tipping
, “
Sparse Bayesian learning and the relevance vector machine
,”
J. Mach. Learn. Res.
1
(
3
),
211
244
(
2001
).
10.
S.
Ji
,
Y.
Xue
, and
L.
Carin
, “
Bayesian compressive sensing
,”
IEEE Trans. Signal Process.
56
(
6
),
2346
2356
(
2008
).
11.
D. P.
Wipf
and
B. D.
Rao
, “
Sparse Bayesian learning for basis selection
,”
IEEE Trans. Signal Process.
52
(
8
),
2153
2164
(
2004
).
12.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM Rev.
43
(
1
),
129
159
(
2001
).
13.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc. Ser. B: Methodol.
58
(
1
),
267
288
(
1996
).
14.
K. L.
Gemba
,
W. S.
Hodgkiss
, and
P.
Gerstoft
, “
Adaptive and compressive matched field processing
,”
J. Acoust. Soc. Am.
141
(
1
),
92
103
(
2017
).
15.
K. L.
Gemba
,
S.
Nannuru
, and
P.
Gerstoft
, “
Robust ocean acoustic localization with sparse Bayesian learning
,”
IEEE J. Sel. Top. Signal Process.
13
(
1
),
49
60
(
2019
).
16.
P.
Gerstoft
,
C. F.
Mecklenbräuker
,
A.
Xenaki
, and
S.
Nannuru
, “
Multisnapshot sparse Bayesian learning for DOA
,”
IEEE Signal Process. Lett.
23
(
10
),
1469
1473
(
2016
).
17.
P.
Gerstoft
,
S.
Nannuru
,
C. F.
Mecklenbräuker
, and
G.
Leus
, “
DOA estimation in heteroscedastic noise with sparse Bayesian learning
,” in
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Calgary, AB, Canada (
IEEE
,
New York
,
2018
), pp.
3459
3463
.
18.
J.
Dai
,
X.
Bao
,
W.
Xu
, and
C.
Chang
, “
Root sparse Bayesian learning for off-grid DOA estimation
,”
IEEE Signal Process. Lett.
24
(
1
),
46
50
(
2017
).
19.
J.
Dai
and
H. C.
So
, “
Real-valued sparse Bayesian learning for DOA estimation with arbitrary linear arrays
,”
IEEE Trans. Signal Process.
69
,
4977
4990
(
2021
).
20.
Y.
Chi
,
L. L.
Scharf
,
A.
Pezeshki
, and
A. R.
Calderbank
, “
Sensitivity to basis mismatch in compressed sensing
,”
IEEE Trans. Signal Process.
59
(
5
),
2182
2195
(
2011
).
21.
B. N.
Bhaskar
,
G.
Tang
, and
B.
Recht
, “
Atomic norm denoising with applications to line spectral estimation
,”
IEEE Trans. Signal Process.
61
(
23
),
5987
5999
(
2013
).
22.
Y.
Chi
and
M.
Ferreira Da Costa
, “
Harnessing sparsity over the continuum: Atomic norm minimization for superresolution
,”
IEEE Signal Process. Mag.
37
(
2
),
39
57
(
2020
).
23.
R. J.
Vaccaro
,
A.
Chhetri
, and
B. F.
Harrison
, “
Matrix filter design for passive sonar interference suppression
,”
J. Acoust. Soc. Am.
115
(
6
),
3010
3020
(
2004
).
24.
L.
Qiu
,
T.
Lan
, and
Y.
Wang
, “
A sparse perspective for direction-of-arrival estimation under strong near-field interference environment
,”
Sensors
20
(
1
),
163
(
2019
).
25.
W.
Zangwill
,
Nonlinear Programming: A Unified Approach
(
Prentice-Hall
,
Hoboken, NJ
,
1969
).
26.
J. C.
Bezdek
and
R. J.
Hathaway
, “
Convergence of alternating optimization
,”
Neural Parallel Sci. Comput.
11
(
4
),
351
368
(
2003
).
27.
A.
Gunawardana
,
W.
Byrne
, and
M. I.
Jordan
, “
Convergence theorems for generalized alternating minimization procedures
,”
J. Mach. Learn. Res.
6
(
12
),
2049
2073
(
2005
).
28.
P.
Gerstoft
,
A.
Xenaki
, and
C. F.
Mecklenbräuker
, “
Multiple and single snapshot compressive beamforming
,”
J. Acoust. Soc. Am.
138
(
4
),
2003
2014
(
2015
).
29.
L.
Mirsky
, “
Symmetric gauge functions and unitarily invariant norms
,”
Q. J. Math.
11
(
1
),
50
59
(
1960
).
30.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
, 4th ed. (
John Wiley & Sons
,
Hoboken, NJ
,
2000
).
31.
C. A.
Balanis
,
Antenna Theory: Analysis and Design
(
Wiley
,
Hoboken, NJ
,
2005
).
32.
A.
Xenaki
,
P.
Gerstoft
, and
K.
Mosegaard
, “
Compressive beamforming
,”
J. Acoust. Soc. Am.
136
(
1
),
260
271
(
2014
).
33.
S. R.
Searle
and
A. I.
Khuri
,
Matrix Algebra Useful for Statistics
, 2nd ed. (
John Wiley & Sons
,
Hoboken, NJ
,
2017
).
34.
D.
Wipf
and
S.
Nagarajan
, “
A new view of automatic relevance determination
,”
Adv. Neural Inf. Process. Syst.
20
,
1625
1632
(
2008
).
35.
C.
Eckart
and
G.
Young
, “
The approximation of one matrix by another of lower rank
,”
Psychometrika
1
(
3
),
211
218
(
1936
).
36.
M.
Grant
and
S.
Boyd
, “
CVX: Matlab software for disciplined convex programming, version 2.1
,” (
2014
), http://cvxr.com/cvx (Last viewed September 30, 2023).
37.
E. J.
Candes
,
M. B.
Wakin
, and
S. P.
Boyd
, “
Enhancing sparsity by reweighted ℓ1 minimization
,”
J. Fourier Anal. Appl.
14
,
877
905
(
2008
).
38.
B. D.
Carlson
, “
Covariance matrix estimation errors and diagonal loading in adaptive arrays
,”
IEEE Trans. Aerosp. Electron. Syst.
24
(
4
),
397
401
(
1988
).
39.
A. V.
Oppenheim
,
A. S.
Willsky
, and
S. H.
Nawab
,
Signals and Systems
, 2nd ed. (
Prentice-Hall, Inc
.,
Hoboken, NJ
,
1997
).
You do not currently have access to this content.