Focusing waves with a spatial extent smaller than a half wavelength (i.e., super resolution or sub diffraction limit) is possible using resonators placed in the near field of time reversal (TR) focusing. While a two-dimensional (2D) Helmholtz resonator array in a three-dimensional reverberant environment has limited ability to produce a high-resolution spatial focus in the TR focusing of audible sound, it is shown that acoustic waves propagating out-of-plane with the resonator array are not as strongly affected by the smaller effective wavelength induced by the resonator array, partially negating the effect of the resonators. A physical 2D waveguide is shown to limit the out-of-plane propagation, leading to improved resolution. It is also shown that post processing using an orthogonal particle velocity decomposition of a spatial scan of the focusing can filter out-of-plane particle motion in the near field of the array, which bypasses the effect of the unwanted third spatial dimension of propagation. The spatial resolution in a reverberant environment is shown to improve in the presence of a 2D Helmholtz resonator array and then further improve by adding a 2D waveguide. The resolution among the resonator array is better still without using a waveguide and instead using the partial-pressure reconstruction.

1.
P. N.
Keating
,
T.
Sawatari
, and
G.
Zilinskas
, “
Signal processing in acoustic imaging
,”
Proc. IEEE
67
(
4
),
496
510
(
1979
).
2.
M.
Kompis
,
H.
Pasterkamp
, and
G. R.
Wodicka
, “
Acoustic imaging of the human chest
,”
Chest
120
(
4
),
1309
1321
(
2001
).
3.
M.
Born
,
E.
Wolf
,
A. B.
Bhatia
,
P. C.
Clemmow
,
D.
Gabor
,
A. R.
Stokes
,
P. A.
Wayman
,
W. L.
Wilcock
, and
P. L.
Knight
,
Principles of Optics
(
Cambridge University Press
,
Cambridge, UK
,
2020
).
4.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
5.
B. E.
Anderson
,
M.
Griffa
,
C.
Larmat
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Time reversal
,”
Acoust. Today
4
(
1
),
5
16
(
2008
).
6.
B. E.
Anderson
,
M. C.
Remillieux
,
P.-Y.
Le Bas
, and
T. J.
Ulrich
, “
Time reversal techniques
,” in
Nonlinear Acoustic Techniques for Nondestructive Evaluation
, 1st ed., edited by
T.
Kundu
(
Springer and Acoustical Society of America
,
New York
,
2018
), pp.
547
581
.
7.
B.
Van Damme
,
K.
Van Den Abeele
,
Y.
Li
, and
O.
Bou Matar
, “
Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept
,”
J. Appl. Phys.
109
(
10
),
104910
(
2011
).
8.
B. E.
Anderson
,
M.
Clemens
, and
M. L.
Willardson
, “
The effect of transducer directivity on time reversal focusing
,”
J. Acoust. Soc. Am.
142
(
1
),
EL95
EL101
(
2017
).
9.
A.
Parvulescu
and
C. S.
Clay
, “
Reproducibility of signal transmissions in the ocean
,”
Radio Electron. Eng. UK
29
(
4
),
223
228
(
1965
).
10.
D. R.
Jackson
and
D. R.
Dowling
, “
Phase conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
(
1991
).
11.
G. F.
Edelmann
,
H. C.
Song
,
S.
Kim
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
T.
Akal
, “
Underwater acoustic communications using time reversal
,”
IEEE J. Oceanic Eng.
30
(
4
),
852
864
(
2005
).
12.
H. C.
Song
, “
An overview of underwater time-reversal communication
,”
IEEE J. Oceanic Eng.
41
,
644
655
(
2016
).
13.
H. C.
Song
and
W. A.
Kuperman
, “
Time machine in ocean acoustics
,”
J. Acoust. Soc. Am.
153
(
1
),
R1
R2
(
2023
).
14.
J. V.
Candy
,
A. W.
Meyer
,
A. J.
Poggio
, and
B. L.
Guidry
, “
Time-reversal processing for an acoustic communications experiment in a highly reverberant environment
,”
J. Acoust. Soc. Am.
115
(
4
),
1621
1631
(
2004
).
15.
S.
Yon
,
M.
Tanter
, and
M.
Fink
, “
Sound focusing in rooms: The time-reversal approach
,”
J. Acoust. Soc. Am.
113
(
3
),
1533
1543
(
2003
).
16.
G.
Ribay
,
J.
de Rosny
, and
M.
Fink
, “
Time reversal of noise sources in a reverberation room
,”
J. Acoust. Soc. Am.
117
(
5
),
2866
2872
(
2005
).
17.
B. E.
Anderson
,
T. J.
Ulrich
,
P.-Y.
Le Bas
, and
J. A.
Ten Cate
, “
Three dimensional time reversal communications in elastic media
,”
J. Acoust. Soc. Am.
139
(
2
),
EL25
EL30
(
2016
).
18.
B. E.
Anderson
, “
High amplitude time reversal focusing of sound and vibration
,”
Proc. Mtgs. Acoust.
51
,
032001
(
2023
).
19.
J.-L.
Thomas
,
F.
Wu
, and
M.
Fink
, “
Time reversal focusing applied to lithotripsy
,”
Ultrason. Imag.
18
(
2
),
106
121
(
1996
).
20.
M.
Tanter
,
J.-L.
Thomas
, and
M.
Fink
, “
Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull
,”
J. Acoust. Soc. Am.
103
(
5
),
2403
2410
(
1998
).
21.
G.
Montaldo
,
P.
Roux
,
A.
Derode
,
C.
Negreira
, and
M.
Fink
, “
Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy
,”
Appl. Phys. Lett.
80
,
897
899
(
2002
).
22.
B. E.
Anderson
,
M.
Griffa
,
T. J.
Ulrich
,
P.-Y. L.
Bas
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Crack localization and characterization in solid media using time reversal techniques
,” in
Proceedings of the 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium
,
Salt Lake City, Utah
(
June 27–30
,
2010
), Paper No. 10–154.
23.
M. L.
Willardson
,
B. E.
Anderson
,
S. M.
Young
,
M. H.
Denison
, and
B. D.
Patchett
, “
Time reversal focusing of high amplitude sound in a reverberation chamber
,”
J. Acoust. Soc. Am.
143
(
2
),
696
705
(
2018
).
24.
C. B.
Wallace
and
B. E.
Anderson
, “
High-amplitude time reversal focusing of airborne ultrasound to generate a focused nonlinear difference frequency
,”
J. Acoust. Soc. Am.
150
(
2
),
1411
1423
(
2021
).
25.
B. D.
Patchett
and
B. E.
Anderson
, “
Nonlinear characteristics of high amplitude focusing using time reversal in a reverberation chamber
,”
J. Acoust. Soc. Am.
151
(
6
),
3603
3614
(
2022
).
26.
B. D.
Patchett
,
B. E.
Anderson
, and
A. D.
Kingsley
, “
Numerical modeling of Mach-stem formation in high-amplitude time-reversal focusing
,”
J. Acoust. Soc. Am.
153
(
5
),
2724
2732
(
2023
).
27.
C.
Larmat
,
J.-P.
Montagner
,
M.
Fink
,
Y.
Capdeville
,
A.
Tourin
, and
E.
Clevede
, “
Time-reversal imaging of seismic sources and applications to the great Sumatra earthquake
,”
Geophys. Res. Lett.
33
(
19
),
L19312
, https://doi.org/10.1029/2006GL026336 (
2006
).
28.
C.
Larmat
,
J.
Tromp
,
Q.
Liu
, and
J.-P.
Montagner
, “
Time-reversal location of glacial earthquakes
,”
J. Geophys. Res.
113
(
B9
),
B09314
, https://doi.org/10.1029/2008JB005607 (
2008
).
29.
C.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Tremor source location using time-reversal: Selecting the appropriate imaging field
,”
Geophys. Res. Lett.
36
(
22
),
L22304
, https://doi.org/10.1029/2009GL040099 (
2009
).
30.
C. S.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Time-reversal methods in geophysics
,”
Phys. Today
63
(
8
),
31
35
(
2010
).
31.
R. K.
Ing
and
N.
Quieffin
, “
In solid localization of finger impacts using acoustic time-reversal process
,”
Appl. Phys. Lett
87
(
20
),
204104
(
2005
).
32.
D.
Vigoureux
and
J.-L.
Guyader
, “
A simplified time reversal method used to localize vibrations sources in a complex structure
,”
Appl. Acoust.
73
(
5
),
491
496
(
2012
).
33.
D. G.
Albert
,
L.
Liu
, and
M. L.
Moran
, “
Time reversal processing for source location in an urban environment (L)
,”
J. Acoust. Soc. Am.
118
(
2
),
616
619
(
2005
).
34.
S.
Cheinet
,
L.
Ehrhardt
, and
T.
Broglin
, “
Impulse source localization in an urban environment: Time reversal versus time matching
,”
J. Acoust. Soc. Am.
139
(
1
),
128
140
(
2016
).
35.
C.
Heaton
,
B. E.
Anderson
, and
S. M.
Young
, “
Time reversal focusing of elastic waves in plates for educational demonstration purposes
,”
J. Acoust. Soc. Am.
141
(
2
),
1084
1092
(
2017
).
36.
L. A.
Barnes
,
B. E.
Anderson
,
P.-Y.
Le Bas
,
A. D.
Kingsley
,
A. C.
Brown
, and
H. R.
Thomsen
, “
The physics of knocking over LEGO minifigures with time reversal focused vibrations
,”
J. Acoust. Soc. Am.
151
(
2
),
738
751
(
2022
).
37.
A. A.
Maznev
and
O. B.
Wright
, “
Upholding the diffraction limit in the focusing of light and sound
,”
Wave Motion
68
,
182
189
(
2017
).
38.
E. D.
Golightly
,
B. E.
Anderson
,
A. D.
Kingsley
,
R.
Russell
, and
R.
Higgins
, “
Super resolution, time reversal focusing using path diverting properties of scatterers
,”
Appl. Acoust.
206
,
109308
(
2023
).
39.
A. D.
Kingsley
,
B. E.
Anderson
, and
T. J.
Ulrich
, “
Super-resolution within a one-dimensional phononic crystal of resonators using time reversal in an equivalent circuit model
,”
J. Acoust. Soc. Am.
152
(
3
),
1263
1271
(
2022
).
40.
G.
Lerosey
,
J.
de Rosny
,
A.
Tourin
, and
M.
Fink
, “
Focusing beyond the diffraction limit with far-field time reversal
,”
Science
315
(
5815
),
1120
1122
(
2007
).
41.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Acoustic resonators for far-field control of sound on a subwavelength scale
,”
Phys. Rev. Lett.
107
(
6
),
064301
(
2011
).
42.
F.
Lemoult
,
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
, “
Soda cans metamaterial: A subwavelength-scaled phononic crystal
,”
Crystals
6
(
7
),
82
(
2016
).
43.
A. A.
Maznev
,
G.
Gu
,
S. Y.
Sun
,
J.
Xu
,
Y.
Shen
,
N.
Fang
, and
S. Y.
Zhang
, “
Extraordinary focusing of sound above a soda can array without time reversal
,”
New J. Phys.
17
(
4
),
042001
(
2015
).
44.
A. D.
Kingsley
and
B. E.
Anderson
, “
Time reversal in a phononic crystal using finite-element modeling and an equivalent circuit model
,”
JASA Express Lett.
2
(
12
),
124002
(
2022
).
45.
A. D.
Kingsley
,
A.
Basham
, and
B. E.
Anderson
, “
Time reversal imaging of complex sources in a three-dimensional environment using a spatial inverse filter
,”
J. Acoust. Soc. Am.
154
(
2
),
1018
1027
(
2023
).
46.
F.
Lemoult
,
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
, “
Wave propagation control at the depp subwavelength scale in metamaterials
,”
Nat. Phys.
9
,
55
60
(
2013
).
47.
A. S.
Gliozzi
,
M.
Miniaci
,
F.
Bosia
,
N. M.
Pugno
, and
M.
Scalerandi
, “
Metamaterials-based sensor to detect and locate nonlinear elastic sources
,”
Appl. Phys. Lett.
107
,
161902
(
2015
).
48.
M.
Miniaci
,
A. S.
Gliozzi
,
B.
Morvan
,
A.
Krushynska
,
F.
Bosia
,
M.
Scalerandi
, and
N. M.
Pugno
, “
Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals
,”
Phys. Rev. Lett.
118
,
214301
(
2017
).
49.
A. D.
Kingsley
,
J. M.
Clift
,
B. E.
Anderson
,
J. E.
Ellsworth
,
T. J.
Ulrich
, and
P.-Y. L.
Bas
, “
Development of software for performing acoustic time reversal with multiple inputs and outputs
,”
Proc. Mtgs. Acoust.
46
,
055003
(
2022
).
50.
B. D.
Patchett
,
B. E.
Anderson
, and
A. D.
Kingsley
, “
The impact of room location on time reversal focusing amplitudes
,”
J. Acoust. Soc. Am.
150
(
2
),
1424
1433
(
2021
).
51.
ISO 3741:2010
, “Sound power and energy in reverberant environments” (
International Organization for Standardization
,
Geneva, Switzerland
,
2010
).
52.
S. M.
Young
,
B. E.
Anderson
,
R. C.
Davis
,
R. R.
Vanfleet
, and
N. B.
Morrill
, “
Sound transmission measurements through porous screen
,”
Proc. Mtgs. Acoust.
26
,
045003
(
2017
).
53.
F. J.
Fahy
,
Sound Intensity
, 2nd ed. (
Routledge and CRC Press
,
London
, UK,
2017
), p.
95
.
54.
J. S.
Lawrence
,
K. L.
Gee
,
T. B.
Neilsen
, and
S. D.
Sommerfeldt
, “
Highly directional pressure sensing using the phase gradient
,”
J. Acoust. Soc. Am.
144
(
4
),
EL346
EL352
(
2018
).
You do not currently have access to this content.