Recently, acoustic communication employing orbital angular momentum (OAM) opens another avenue for efficient data transmission in aquatic environments. Current topological charge (TC) detection of OAM beams relies on the orthogonality among different-order OAM beams. However, such strategy requires measurements of the complete azimuthal acoustic pressure, which inevitably reduces the efficiency and increases the bit error rate (BER). To address these challenges, this study proposes a modified dynamic modal decomposition (DMD) method by partially sampling the acoustic field for precise TC detection. Numerical simulations confirm the accuracy of this approach in extracting single or multiple TCs magnitudes within a partially sampled acoustic field. We theoretically compare the performance of the modified DMD approach with conventional orthogonal decoding method. Simulation results indicate that our modified DMD scheme exhibits lower BER under the same noise interference and is more robust to the array misalignment. This research introduces an efficient demodulation solution for acoustic OAM communication, offering potential benefits for simplifying receiver array design and enhancing long-distance underwater data transmission.

1.
S. J.
Park
, “
Performance analysis of triangular quadrature amplitude modulation in AWGN channel
,”
IEEE Commun. Lett.
16
,
765
768
(
2012
).
2.
A.
Singhal
,
R. K.
Mallik
, and
B.
Lall
, “
Performance analysis of amplitude modulation schemes for diffusion-based molecular communication
,”
IEEE Trans. Wireless Commun.
14
,
5681
5691
(
2015
).
3.
Y.
Jiao
,
X.
Han
,
J.
Fan
,
G.
Raithel
,
J.
Zhao
, and
S.
Jia
, “
Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication
,”
Appl. Phys. Express
12
,
126002
(
2019
).
4.
G.
Kramer
,
A.
Ashikhmin
,
A.
Wijngaarden
, and
X.
Wei
, “
Spectral efficiency of coded phase-shift keying for fiber-optic communication
,”
J. Lightwave Technol.
21
,
2438
2445
(
2003
).
5.
H.
Samimi
and
M.
Uysal
, “
Performance of coherent differential phase-shift keying free-space optical communication systems in M-distributed turbulence
,”
J. Opt. Commun. Netw.
5
,
704
710
(
2013
).
6.
B.
Niu
,
X. H.
Qu
,
X. M.
Guan
, and
F. M.
Zhang
, “
Fast HDR image generation method from a single snapshot image based on frequency division multiplexing technology
,”
Opt. Express
29
,
27562
27572
(
2021
).
7.
M. S.
Ahmed
,
N. S. M.
Shah
,
Y. Y.
Al-Aboosi
,
M. S. M.
Gismalla
,
M. F. L.
Abdullah
,
Y. A.
Jawhar
, and
M.
Balfaqih
, “
Filter orthogonal frequency-division multiplexing scheme based on polar code in underwater acoustic communication with non-Gaussian distribution noise
,”
ETRI J.
43
,
184
196
(
2021
).
8.
J. M. D.
Freitas
, “
Optical crosstalk and performance in time division multiplexed derivative sensing techniques
,”
IEEE Sens. J.
20
,
10615
10624
(
2020
).
9.
R.
Diamant
and
L.
Lampe
, “
Spatial reuse time-division multiple access for broadcast ad hoc underwater acoustic communication networks
,”
IEEE J. Oceanic Eng.
36
,
172
185
(
2011
).
10.
H.
Ishio
,
J.
Minowa
, and
K.
Nosu
, “
Review and status of wavelength-division-multiplexing technology and its application
,”
J. Lightwave Technol.
2
,
448
463
(
1984
).
11.
N. S.
Bergano
, “
Wavelength division multiplexing in long-haul transoceanic transmission systems
,”
J. Lightwave Technol.
23
,
4125
4139
(
2005
).
12.
L.
Allen
,
M. W.
Beijersbergen
,
R. J.
Spreeuw
, and
J. P.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
8189
(
1992
).
13.
D.
Mamadou
,
F.
Shen
,
M. I.
Dedo
,
Q. F.
Zhou
,
K.
Guo
, and
Z. Y.
Guo
, “
High-efficiency sorting and measurement of orbital angular momentum modes based on the March–Zehnder interferometer and complex phase gratings
,”
Meas. Sci. Technol.
30
,
075201
(
2019
).
14.
Z. K.
Wang
,
M. I.
Dedo
,
K.
Guo
,
K. Y.
Zhou
,
F.
Shen
,
Y. X.
Sun
,
S. T.
Liu
, and
Z. Y.
Guo
, “
Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network
,”
IEEE Photonics J.
11
,
7903614
(
2019
).
15.
Y.
Lei
,
L. J.
Li
,
H. P.
Zhou
,
K.
Guo
, and
Z. Y.
Guo
, “
Transmission characteristics of vortex frozen waves in different obstacle channels
,”
Opt. Express
31
,
4701
4711
(
2023
).
16.
C. H.
Kai
,
Z. K.
Feng
,
M. I.
Dedo
,
P.
Huang
,
K.
Guo
,
F.
Shen
,
J.
Gao
, and
Z. Y.
Guo
, “
The performances of different OAM encoding systems
,”
Opt. Commun.
430
,
151
157
(
2019
).
17.
G.
Gibson
,
J.
Courtial
,
M. J.
Padgett
,
M.
Vasnetsov
,
V.
Pas'ko
,
S. M.
Barnett
, and
S. F.
Arnold
, “
Free-space information transfer using light beams carrying orbital angular momentum
,”
Opt. Express
12
,
5448
5456
(
2004
).
18.
M.
Krenn
,
R.
Fickler
,
M.
Fink
,
J.
Handsteiner
,
M.
Malik
,
T.
Scheidl
,
R.
Ursin
, and
A.
Zeilinger
, “
Communication with spatially modulated light through turbulent air across Vienna
,”
New J. Phys.
16
,
113028
(
2014
).
19.
S. Y.
Fu
,
Y. W.
Zhai
,
C.
Yin
,
H.
Zhou
, and
C. Q.
Gao
, “
Mixed orbital angular momentum amplitude shift keying through a single hologram
,”
OSA Continuum
1
,
295
308
(
2018
).
20.
N.
Bozinovic
,
Y.
Yue
,
Y.
Ren
,
M.
Tur
,
P.
Kristensen
,
H.
Huang
,
A. E.
Willner
, and
S.
Ramachandran
, “
Terabit-scale orbital angular momentum mode division multiplexing in fibers
,”
Science
340
,
1545
1548
(
2013
).
21.
P. Q.
Gou
,
M.
Kong
,
G. M.
Yang
,
Z. G.
Guo
,
J.
Zhang
,
X. F.
Han
,
J. N.
Xiao
, and
J. J.
Yu
, “
Integration of OAM and WDM in optical wireless system by radial uniform circular array
,”
Opt. Commun.
424
,
159
162
(
2018
).
22.
N.
Zhou
,
J.
Liu
, and
J.
Wang
, “
Reconfigurable and tunable twisted light laser
,”
Sci. Rep.
8
,
11394
(
2018
).
23.
L.
Zhu
,
J.
Liu
,
Q.
Mo
,
C.
Du
, and
J.
Wang
, “
Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber
,”
Opt. Express
24
,
16934
16944
(
2016
).
24.
J.
Wang
,
J. Y.
Yang
,
I. M.
Fazal
,
N.
Ahmed
,
Y.
Yan
,
H.
Huang
,
Y. X.
Ren
,
Y.
Yue
,
S.
Dolinar
,
M.
Tur
, and
A. E.
Willner
, “
Terabit free-space data transmission employing orbital angular momentum multiplexing
,”
Nat. Photonics
6
,
488
496
(
2012
).
25.
Z. Y.
Guo
,
H. J.
Liu
,
H. P.
Zhou
,
K. Y.
Zhou
,
S. M.
Wang
,
F.
Shen
,
Y. B.
Gong
,
J.
Gao
,
S. T.
Liu
, and
K.
Guo
, “
High-order acoustic vortex field generation based on a metasurface
,”
Phys. Rev. E
100
,
053315
(
2019
).
26.
H. P.
Zhou
,
J. J.
Li
,
K.
Guo
, and
Z. Y.
Guo
, “
Generation of acoustic vortex beams with designed Fermat's spiral diffraction grating
,”
J. Acoust. Soc. Am.
146
,
4237
4243
(
2019
).
27.
L.
Li
,
W.
Yue
,
C.
Kai
,
D.
Liang
,
G.
Guo
,
J.
Tu
,
D.
Zhang
, and
Q.
Ma
, “
Perfect acoustic-vortexes constructed by the fourier transform of quasi-bessel beams based on the simplified ring array of sectorial planar transducers
,”
IEEE Trans. Ultrason, Ferroelectr. Freq. Contr.
70
,
748
758
(
2023
).
28.
V.
Bollen
and
P. L.
Marston
, “
Phase and amplitude evolution of backscattering by a sphere scanned through an acoustic vortex beam: Measured helicity projections
,”
J. Acoust. Soc. Am.
148
,
EL135
EL140
(
2020
).
29.
T. M.
Marston
and
P. L.
Marston
, “
Modulated helicity for acoustic communications and helicity-selective acoustic receivers
,”
J. Acoust. Soc. Am.
127
,
1856
(
2010
).
30.
B. T.
Hefner
and
P. L.
Marston
, “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
,
3313
3316
(
1999
).
31.
V.
Bollen
,
D. J.
Zartman
,
T. M.
Marston
, and
P. L.
Marston
, “
Measured scattering of a first-order vortex beam by a sphere: Cross-helicity and helicity-neutral near-forward scattering and helicity modulation
,”
Proc. Mtgs. Acoust.
19
,
070075
(
2013
).
32.
C.
Shi
,
M.
Dubois
,
Y.
Wang
, and
X.
Zhang
, “
High-speed acoustic communication by multiplexing orbital angular momentum
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
7250
7253
(
2017
).
33.
X.
Jiang
,
B.
Liang
,
J. C.
Cheng
, and
C. W.
Qiu
, “
Twisted acoustics: Etasurface‐enabled multiplexing and demultiplexing
,”
Adv. Mater.
30
,
1800257
(
2018
).
34.
H.
Zhang
and
J.
Yang
, “
Transmission of video image in underwater acoustic communication
,” arXiv:1902.10196 (
2019
).
35.
X. J.
Li
,
Y. Z.
Li
,
Q. Y.
Ma
,
G. P.
Guo
,
J.
Tu
, and
D.
Zhang
, “
Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays
,”
J. Appl. Phys.
127
,
124902
(
2020
).
36.
G. P.
Guo
,
X. J.
Li
,
Q. D.
Wang
,
Y. Z.
Li
,
H. Y.
Chu
,
Q. Y.
Ma
,
J.
Tu
, and
D.
Zhang
, “
Spectrum decomposition-based orbital angular momentum communication of acoustic vortex beams using single-ring transceiver arrays
,”
IEEE Trans. Ultrason, Ferroelectr. Freq. Contr.
68
,
1399
1407
(
2021
).
37.
C. F.
Gong
,
J. J.
Li
,
K.
Guo
,
H. P.
Zhou
, and
Z. Y.
Guo
, “
Measuring orbital angular momentum of acoustic vortices based on Fraunhofer's diffraction
,”
Chin. Phys. B
29
,
104301
(
2020
).
38.
H. P.
Zhou
,
J. J.
Li
,
C. F.
Gong
,
K.
Guo
, and
Z. Y.
Guo
, “
Measuring the topological charges of acoustic vortices by apertures
,”
J. Acoust. Soc. Am.
148
,
167
173
(
2020
).
39.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
40.
E.
Barocio
,
B. C.
Pal
,
N. F.
Thornhill
, and
A. R.
Messina
, “
A dynamic mode decomposition framework for global power system oscillation analysis
,”
IEEE Trans. Power Syst.
30
,
2902
2912
(
2015
).
41.
Y.
Cheng
and
Q.
Chen
, “
Large eddy simulation and dynamic mode decomposition of turbulent mixing layers
,”
Appl. Sci.
11
,
12127
(
2021
).
42.
Y. M.
Zhang
,
M. L.
Chen
, and
L. J.
Jiang
, “
Analysis of electromagnetic vortex beams using modified dynamic mode decomposition in spatial angular domain
,”
Opt. Express
27
,
27702
27711
(
2019
).
43.
L.
Yang
,
Q.
Ma
,
J.
Tu
, and
D.
Zhang
, “
Phase-coded approach for controllable generation of acoustical vortices
,”
J. Appl. Phys.
113
,
154904
(
2013
).
44.
W.
Li
,
S. J.
Dai
,
Q. Y.
Ma
,
G. P.
Guo
, and
H. P.
Ding
, “
Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
,”
Chin. Phys. B
27
,
024301
(
2018
).
45.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
46.
G. P.
Guo
,
X. J.
Li
,
Q. D.
Wang
,
Y. Z.
Li
,
Q. Y.
Ma
,
J.
Tu
, and
D.
Zhang
, “
Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
,”
Chin. Phys. B
31
,
124302
(
2022
).
You do not currently have access to this content.