Passive acoustic monitors analyze sound signals emitted by seafloor gas bubbles to measure leakage rates. In scenarios with low-flux gas leaks, individual bubble sounds are typically non-overlapping. Measurement methods for these bubble streams aim to estimate the frequency peak of each bubble sound, which correlates with the bubble's size. However, the presence of ocean ambient noise poses challenges to accurately estimating these frequency peaks, thereby affecting the measurement of gas leakage rates in shallow sea environments using passive acoustic monitors. To address this issue, we propose a robust measurement method that includes a noise-robust sparse time-frequency representation algorithm and an adaptive thresholding approach for detecting bubble frequencies. We demonstrate the effectiveness of our proposed method using experimental data augmented with ocean ambient noise and ship-transit noise recorded from a bay area.

1.
B.
Roche
,
J. M.
Bull
,
H.
Marin-Moreno
,
T. G.
Leighton
,
I. H.
Falcon-Suarez
,
M.
Tholen
,
P. R.
White
,
G.
Provenzano
,
A.
Lichtschlag
,
J.
Li
, and
M.
Faggetter
, “
Time-lapse imaging of CO2 migration within near-surface sediments during a controlled sub-seabed release experiment
,”
Int. J. Greenhouse Gas Control
109
,
103363
(
2021
).
2.
A.
Skarke
,
C.
Ruppel
,
M.
Kodis
,
D.
Brothers
, and
E.
Lobecker
, “
Widespread methane leakage from the sea floor on the northern US Atlantic margin
,”
Nat. Geosci.
7
(
9
),
657
661
(
2014
).
3.
T.
Dixon
and
K. D.
Romanak
, “
Improving monitoring protocols for CO2 geological storage with technical advances in CO2 attribution monitoring
,”
Int. J. Greenhouse Gas Control
41
,
29
40
(
2015
).
4.
M. R.
Tveit
,
M.
Khalifeh
,
T.
Nordam
, and
A.
Saasen
, “
The fate of hydrocarbon leaks from plugged and abandoned wells by means of natural seepages
,”
J. Pet. Sci. Eng.
196
(
1
),
108004
(
2020
).
5.
J.
Li
,
P. R.
White
,
B.
Roche
,
J. M.
Bull
,
T. G.
Leighton
,
J. W.
Davis
, and
J. W.
Fone
, “
Acoustic and optical determination of bubble size distributions—Quantification of seabed gas emissions
,”
Int. J. Greenhouse Gas Control
108
,
103313
(
2021
).
6.
K. M.
Rychert
and
T. C.
Weber
, “
Tests of acoustic target strength and bubble dissolution models using a synthetic bubble generator
,”
J. Atmos. Ocean. Technol.
37
(
1
),
129
140
(
2020
).
7.
J.
Li
,
B.
Roche
,
J. M.
Bull
,
P. R.
White
,
J. W.
Davis
,
M.
Deponte
,
E.
Gordini
, and
D.
Cotterle
, “
Passive acoustic monitoring of a natural CO2 seep site—Implications for carbon capture and storage
,”
Int. J. Greenhouse Gas Control
93
,
102899
(
2020
).
8.
T.
Leighton
and
P.
White
, “
Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions
,”
Proc. R. Soc. A.
468
(
2138
),
485
510
(
2012
).
9.
R.
Dziak
,
H.
Matsumoto
,
R.
Embley
,
S.
Merle
,
T.-K.
Lau
,
T.
Baumberger
,
S.
Hammond
, and
N.
Raineault
, “
Passive acoustic records of seafloor methane bubble streams on the Oregon continental margin
,”
Deep-Sea Res. Part II: Top. Stud. Oceanogr.
150
,
210
217
(
2018
).
10.
A.
Budnikov
,
T.
Malakhova
,
I.
Ivanova
, and
E.
Linchenko
, “
Application of a passive acoustic method for detection and estimation of shallow-water bubble gas emissions
,”
Mosc. Univ. Phys. Bull.
74
(
6
),
690
696
(
2019
).
11.
I.
Ivanova
,
A.
Budnikov
,
T.
Malakhova
, and
Y. A.
Iakimychev
, “
Automated way of calculating gas emissions in shallow-water methane seeps using a passive acoustic technique
,”
Bull. Russ. Acad. Sci. Phys.
85
(
2
),
206
209
(
2021
).
12.
M.
Longo
,
G.
Lazzaro
,
C. G.
Caruso
,
V.
Radulescu
,
R.
Radulescu
,
S. S.
Sciré Scappuzzo
,
D.
Birot
, and
F.
Italiano
, “
Black Sea methane flares from the seafloor: Tracking outgassing by using passive acoustics
,”
Front. Earth Sci.
9
,
678834
235
248
(
2021
).
13.
M.
Minnarert
, “
XVI. On musical air-bubbles and the sound of running water
,”
Philosoph. Mag.
16
,
235
248
(
1933
).
14.
A.
Vazquez
,
M. R.
Sanchez
, and
E.
Salinas-Rodríguez
, “
A look at three measurement techniques for bubble size determination
,”
Exp. Therm. Fluid Sci.
30
,
49
57
(
2005
).
15.
I.
Leifer
and
D.
Tang
, “
The acoustic signature of marine seep bubbles
,”
J. Acoust. Soc. Am.
121
(
1
),
EL35
EL40
(
2007
).
16.
A.
Vazquez
,
R.
Manasseh
, and
R.
Chicharro
, “
Can acoustic emissions be used to size bubbles seeping from a sediment bed?
,”
Chem. Eng. Sci.
131
,
187
196
(
2015
).
17.
T.
Valier-Brasier
and
J.-M.
Conoir
, “
Resonant acoustic scattering by two spherical bubbles
,”
J. Acoust. Soc. Am.
145
(
1
),
301
311
(
2019
).
18.
E.
van 't Wout
and
C.
Feuillade
, “
Proximity resonances of water-entrained air bubbles near acoustically reflecting boundaries
,”
J. Acoust. Soc. Am.
149
(
4
),
2477
2491
(
2021
).
19.
I.
Leifer
and
J.
Boles
, “
Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment
,”
Mar. Petrol. Geol.
22
(
4
),
551
568
(
2005
).
20.
M. S.
Salmi
,
H. P.
Johnson
,
I.
Leifer
, and
J. E.
Keister
, “
Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin
,”
Geosphere
7
(
6
),
1273
1283
(
2011
).
21.
I.
Leifer
,
M. J.
Kamerling
,
B. P.
Luyendyk
, and
D. S.
Wilson
, “
Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California
,”
Geo-Mar. Lett.
30
,
331
338
(
2010
).
22.
S. M.
Wiggins
,
I.
Leifer
,
P.
Linke
, and
J. A.
Hildebrand
, “
Long-term acoustic monitoring at North Sea well site 22/4b
,”
Mar. Petrol. Geol.
68
,
776
788
(
2015
).
23.
J.
Li
,
P. R.
White
,
J. M.
Bull
, and
T. G.
Leighton
, “
A noise impact assessment model for passive acoustic measurements of seabed gas fluxes
,”
Ocean Eng.
183
,
294
304
(
2019
).
24.
M.
Nastasi
,
L.
Fredianelli
,
M.
Bernardini
,
L.
Teti
,
F.
Fidecaro
, and
G.
Licitra
, “
Parameters affecting noise emitted by ships moving in port areas
,”
Sustainability
12
(
20
),
8742
(
2020
).
25.
M. M.
Roshid
and
R.
Manasseh
, “
Extraction of bubble size and number data from an acoustically-excited bubble chain
,”
J. Acoust. Soc. Am.
147
(
2
),
921
940
(
2020
).
26.
G. E.
Pfander
and
H.
Rauhut
, “
Sparsity in time-frequency representations
,”
J. Fourier Anal. Appl.
16
(
2
),
233
260
(
2010
).
27.
S.
Wang
,
C.
Cheng
,
J.
Zhou
,
F.
Qin
,
Y.
Feng
,
B.
Ding
,
Z.
Zhao
, and
X.
Chen
, “
Reassignment-enable reweighted sparse time-frequency analysis for sparsity-assisted aeroengine rub-impact fault diagnosis
,”
Mech. Syst. Signal Process.
183
,
109602
(
2023
).
28.
M.
Kowalski
,
A.
Meynard
, and
H.-T.
Wu
, “
Convex optimization approach to signals with fast varying instantaneous frequency
,”
Appl. Comput. Harm. Anal.
44
(
1
),
89
122
(
2018
).
29.
M. S.
Asif
and
J.
Romberg
, “
Fast and accurate algorithms for re-weighted 1-norm minimization
,”
IEEE Trans. Signal Process.
61
(
23
),
5905
5916
(
2013
).
30.
C.
Tong
,
S.
Wang
,
I.
Selesnick
,
R.
Yan
, and
X.
Chen
, “
Ridge-aware weighted sparse time-frequency representation
,”
IEEE Trans. Signal Process.
69
,
136
149
(
2021
).
31.
I.
Cohen
and
B.
Berdugo
, “
Noise estimation by minima controlled recursive averaging for robust speech enhancement
,”
IEEE Signal Process. Lett.
9
(
1
),
12
15
(
2002
).
32.
I.
Cohen
, “
Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging
,”
IEEE Trans. Speech Audio Process.
11
(
5
),
466
475
(
2003
).
33.
S.
Boyd
,
N.
Parikh
,
E.
Chu
,
B.
Peleato
, and
J.
Eckstein
, “
Distributed optimization and statistical learning via the alternating direction method of multipliers
,”
Found. Trend. Mach. Learn.
3
(
1
),
1
122
(
2010
).
34.
Y.
Wang
,
W.
Yin
, and
J.
Zeng
, “
Global convergence of ADMM in nonconvex nonsmooth optimization
,”
J. Sci. Comput.
78
(
1
),
29
63
(
2019
).
35.
F.-X.
Dupé
,
J. M.
Fadili
, and
J.-L.
Starck
, “
A proximal iteration for deconvolving Poisson noisy images using sparse representations
,”
IEEE Trans. Image Process.
18
(
2
),
310
321
(
2009
).
36.
R.
Martin
, “
Spectral subtraction based on minimum statistics
,”
Power
6
(
8
),
1182
1185
(
1994
).
You do not currently have access to this content.