Gigahertz acoustic streaming enables the synthesis of localized microjets reaching speeds of up to meters per second, offering tremendous potential for precision micromanipulation. However, theoretical and numerical investigations of acoustic streaming at these frequencies remain so far relatively scarce due to significant challenges including: (i) the inappropriateness of classical approaches, rooted in asymptotic development, for addressing high-speed streaming with flow velocities comparable to the acoustic velocity; and (ii) the numerical cost of direct numerical simulations generally considered as prohibitive. In this paper, we investigate high-frequency bulk streaming using high-order finite difference direct numerical simulations. First, we demonstrate that high-speed micrometric jets of several meters per second can only be obtained at high frequencies, due to diffraction limits. Second, we establish that the maximum jet streaming speed at a given actuation power scales with the frequency to the power of 3/2 in the low attenuation limit and linearly with the frequency for strongly attenuated waves. Last, our analysis of transient regimes reveals a dramatic reduction in the time required to reach the maximum velocity as the frequency increases (power law in –5/2), leading to characteristic time on the order of μs at gigahertz frequencies, and hence accelerations within the Mega-g range.

1.
Baudoin
,
M.
,
Gerbedoen
,
J.-C.
,
Riaud
,
A.
,
Bou Matar
,
O.
,
Smagin
,
N.
, and
Thomas
,
J.-L.
(
2019
). “
Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers
,”
Sci. Adv.
5
,
eaav1967
.
2.
Baudoin
,
M.
, and
Thomas
,
J.-L.
(
2020
). “
Acoustical tweezers for particle and fluid micromanipulation
,”
Annu. Rev. Fluid Mech.
52
,
205
234
.
3.
Baudoin
,
M.
,
Thomas
,
J.
,
Al Sahely
,
R.
,
Gerbedoen
,
J.
,
Gong
,
Z.
,
Sivery
,
A.
,
Bou Matar
,
O.
,
Smagin
,
N.
,
Favreau
,
P.
, and
Vlandas
,
A.
(
2020
). “
Spatially selective manipulation of cells with single-beam acoustical tweezers
,”
Nat. Commun.
11
,
4244
.
4.
Chen
,
S.
,
Wang
,
Q.
,
Wang
,
Q.
,
Zhou
,
J.
, and
Riaud
,
A.
(
2023
). “
Numerical simulation of the radiation force from transient acoustic fields: Application to laser-guided acoustic tweezers
,”
Phys. Rev. Appl.
19
(
5
),
054057
.
5.
Collins
,
D.
,
Devendran
,
C.
,
Ma
,
Z.
,
Ng
,
J. W.
,
Neild
,
A.
, and
Ai
,
Y.
(
2016a
). “
Acoustic tweezers via sub–time-of-flight regime surface acoustic waves
,”
Sci. Adv.
2
(
7
),
e1600089
.
6.
Collins
,
D.
,
Ma
,
Z.
, and
Ai
,
Y.
(
2016b
). “
Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields
,”
Anal. Chem.
88
,
5513
5522
.
7.
Coulouvrat
,
F.
(
1992
). “
On the equations of nonlinear acoustics
,”
J. Acoustique
5
,
321
359
.
8.
Cui
,
W.
,
He
,
M.
,
Yang
,
Y.
,
Zhang
,
H.
,
Pang
,
W.
, and
Duan
,
X.
(
2018
). “
Hypersonic-induced 3D hydrodynamic tweezers for versatile manipulations of micro/nanoscale objects
,”
Part. Par. Syst. Char.
35
(
8
),
1800068
.
9.
Cui
,
W.
,
Mu
,
L.
,
Duan
,
X.
,
Pang
,
W.
, and
Reed
,
M. A.
(
2019
). “
Trapping of sub-100 nm nanoparticles using gigahertz acoustofluidic tweezers for biosensing applications
,”
Nanoscale
11
(
31
),
14625
14634
.
10.
Cui
,
W.
,
Zhang
,
H.
,
Zhang
,
H.
,
Yang
,
Y.
,
He
,
M.
,
Qu
,
H.
,
Pang
,
W.
,
Zhang
,
D.
, and
Duan
,
X.
(
2016
). “
Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing
,”
Appl. Phys. Lett.
109
(
25
)
253503
.
11.
Daru
,
V.
, and
Gloerfelt
,
X.
(
2007
). “
Aeroacoustic computations using a high-order shock-capturing scheme
,”
AIAA J.
45
(
10
),
2474
2486
.
12.
Daru
,
V.
, and
Tenaud
,
C.
(
2004
). “
High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations
,”
J. Comput. Phys.
193
,
563
594
.
13.
Daru
,
V.
, and
Tenaud
,
C.
(
2009
). “
Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme
,”
Comput. Fluids
38
,
664
676
.
14.
Dentry
,
M.
,
Yeo
,
L.
, and
Friend
,
J.
(
2014
). “
Frequency effects on the scale and behavior of acoustic streaming
,”
Phys. Rev. E
89
(
1
),
013203
.
15.
Ding
,
X.
,
Lin
,
S.-C. S.
,
Kiraly
,
B.
,
Yue
,
H.
,
Li
,
S.
,
Chiang
,
I.-K.
,
Shi
,
J.
,
Benkovic
,
S. J.
, and
Huang
,
T. J.
(
2012
). “
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves
,”
Proc. Natl. Acad. Sci. U.S.A.
109
(
28
),
11105
11109
.
16.
Eisener
,
J.
,
Lippert
,
A.
,
Nowak
,
T.
,
Cairós
,
C.
,
Reuter
,
F.
, and
Mettin
,
R.
(
2015
). “
Characterization of acoustic streaming beyond 100 MHz
,”
Phys. Procedia
70
,
151
154
.
17.
Guo
,
X.
,
Ma
,
Z.
,
Goyal
,
R.
,
Jeong
,
M.
,
Pang
,
W.
,
Fischer
,
P.
,
Duan
,
X.
, and
Qiu
,
T.
(
2020
). “
Acoustofluidic tweezers for the 3D manipulation of microparticles
,” in
2020 IEEE International Conference on Robotics and Automation
, pp.
11392
11397
.
18.
Gusev
,
V.
, and
Rudenko
,
O.
(
1979
). “
Nonsteady quasi-one-dimensional acoustic streaming in unbounded volumes with hydrodynamic nonlinearity
,”
Sov. Phys. Acoust.
25
,
493
497
.
19.
He
,
M.
,
Zhou
,
Y.
,
Cui
,
W.
,
Yang
,
Y.
,
Zhang
,
H.
,
Chen
,
X.
,
Pang
,
W.
, and
Duan
,
X.
(
2018
). “
An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator
,”
Lab Chip
18
(
17
),
2540
2546
.
20.
He
,
S.
,
Wang
,
Z.
,
Pang
,
W.
,
Liu
,
C.
,
Zhang
,
M.
,
Yang
,
Y.
,
Duan
,
X.
, and
Wang
,
Y.
(
2021
). “
Ultra-rapid modulation of neurite outgrowth in a gigahertz acoustic streaming system
,”
Lab Chip.
21
(
10
),
1948
1955
.
21.
Hirt
,
W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
(
1974
). “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
,
227
253
.
22.
Joergensen
,
J.
, and
Bruus
,
H.
(
2023
). “
Theory and modeling of nonperturbative effects in thermoviscous acoustofluidics
,”
Phys. Rev. E
107
,
015106
.
23.
Kim
,
Y. C.
,
Blanloeuil
,
P.
,
Li
,
D. D.
,
Taylor
,
R. A.
, and
Barber
,
T.
(
2023
). “
Acoustically driven translation of a single bubble in pulsed traveling ultrasonic waves
,”
Phys. Fluids
35
(
3
)
033315
.
24.
Lakin
,
K.
,
McCarron
,
K.
, and
Rose
,
R.
(
1995
). “
Solidly mounted resonators and filters
,” in
IEEE Ultrasonics Symposium Proceedings: An International Symposium
, Vol.
2
, pp.
905
908
.
25.
Lakin
,
K. M.
(
2003
). “
A review of thin-film resonator technology
,”
IEEE Microwave
4
(
4
),
61
67
.
26.
Lighthill
,
J.
(
1978
). “
Acoustic streaming
,”
J. Sound Vib.
61
(
3
),
391
418
.
27.
Liu
,
W.
,
Pan
,
S.
,
Zhang
,
H.
,
Tang
,
Z.
,
Liang
,
J.
,
Wang
,
Y.
,
Zhang
,
M.
,
Hu
,
X.
,
Pang
,
W.
, and
Duan
,
X.
(
2018
). “
A universal biomolecular concentrator to enhance biomolecular surface binding based on acoustic NEMS resonator
,”
ACS Cent. Sci.
4
(
7
),
899
908
.
28.
Lu
,
Y.
,
de Vries
,
W. C.
,
Overeem
,
N. J.
,
Duan
,
X.
,
Zhang
,
H.
,
Zhang
,
H.
,
Pang
,
W.
,
Ravoo
,
B. J.
, and
Huskens
,
J.
(
2019
). “
Controlled and tunable loading and release of vesicles by using gigahertz acoustics
,”
Angew Chem. Int. Ed. Engl.
58
(
1
),
159
163
.
29.
Moudjed
,
B.
,
Botton
,
V.
,
Henry
,
D.
,
Ben Hadid
,
H.
, and
Garandet
,
J.-P.
(
2014
). “
Scaling and dimensional analysis of acoustic streaming jets
,”
Phys. Fluids
26
(
9
)
093602
.
30.
Orosco
,
J.
, and
Friend
,
J.
(
2022
). “
Modeling fast acoustic streaming: Steady-state and transient flow solutions
,”
Phys. Rev. E
106
(
4
),
045101
.
31.
Ravi
,
A.
,
Ruyack
,
A.
,
Kuo
,
J.
, and
Lal
,
A.
(
2018
). “
Localized microfluidic mixer using planar Fresnel type GHz ultrasonic transducer
,” in
IEEE International Ultrasonics Symposium
, pp.
1
4
.
32.
Riaud
,
A.
,
Baudoin
,
M.
,
Bou Matar
,
O.
,
Becerra
,
L.
, and
Thomas
,
J.-L.
(
2017a
). “
Selective manipulation of microscopic particles with precursors swirling Rayleigh waves
,”
Phys. Rev. Appl.
7
,
024007
.
33.
Riaud
,
A.
,
Baudoin
,
M.
,
Matar
,
O.
,
Thomas
,
J.-L.
, and
Brunet
,
P.
(
2017b
). “
On the influence of viscosity and caustics on acoustic streaming in sessile droplets: An experimental and a numerical study with a cost-effective method
,”
J. Fluid Mech.
821
,
384
420
.
34.
Sahely
,
R. A.
,
Smagin
,
N.
,
Chutani
,
R.
,
Matar
,
O. B.
, and
Baudoin
,
M.
(
2022
). “
Ultra-high frequency vortex-based tweezers for microparticles manipulation with high spatial selectivity and nanonewton forces
,” arXiv:2203.05214.
35.
Shi
,
X.
,
Bai
,
Y.
,
Wei
,
W.
, and
Duan
,
X.
(
2022
). “
3D manipulation and assembly of microstructures using robotic acoustic streaming tweezers
,” in
IEEE International Ultrasound Symposium
, pp.
1
4
.
36.
Shilton
,
R.
,
Travagliati
,
M.
,
Beltram
,
F.
, and
Cecchini
,
M.
(
2014
). “
Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves
,”
Adv. Mater.
26
,
4941
4946
.
37.
Steckel
,
A.
, and
Bruus
,
H.
(
2020
). “
Numerical simulation of acoustic streaming generated by GHz AlN-thin-film transducers on AlN-SiO2-Bragg-reflector substrates
,” in
Acoustofluidics
, pp.
1
2
.
38.
Stuart
,
J.
(
1963
). “
Laminar boundary layer
,” in
Unsteady Boundary Layers
(
Oxford University Press
,
Oxford
).
39.
Tran
,
S.
,
Marmottant
,
P.
, and
Thibault
,
P.
(
2012
). “
Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels
,”
Appl. Phys. Lett.
101
(
11
)
114103
.
40.
Wang
,
Q.
,
Riaud
,
A.
,
Zhou
,
J.
,
Gong
,
Z.
, and
Baudoin
,
M.
(
2021
). “
Acoustic radiation force on small spheres due to transient acoustic fields
,”
Phys. Rev. Appl.
15
(
4
),
044034
.
41.
Wei
,
W.
,
Wang
,
Y.
,
Wang
,
Z.
, and
Duan
,
X.
(
2023
). “
Microscale acoustic streaming for biomedical and bioanalytical applications
,”
Trends Anal. Chem.
160
,
116958
.
42.
Wu
,
H.
,
Tang
,
Z.
,
You
,
R.
,
Pan
,
S.
,
Liu
,
W.
,
Zhang
,
H.
,
Li
,
T.
,
Yang
,
Y.
,
Sun
,
C.
,
Pang
,
W.
, and
Duan
,
X.
(
2022
). “
Manipulations of micro/nanoparticles using gigahertz acoustic streaming tweezers
,”
Nanotechnol. Precis. Eng.
5
(
2
)
023001
.
43.
Yang
,
Y.
,
Zhang
,
L.
,
Jin
,
K.
,
He
,
M.
,
Wei
,
W.
,
Chen
,
X.
,
Yang
,
Q.
,
Wang
,
Y.
,
Pang
,
W.
,
Ren
,
X.
, and
Duan
,
X.
(
2022
). “
Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles
,”
Sci. Adv.
8
(
30
),
eabn8440
.
44.
Yeo
,
L.
, and
Friend
,
J.
(
2014
). “
Surface acoustic wave microfluidics
,”
Annu. Rev. Fluid Mech.
46
(
46
),
379
406
.
45.
Zhang
,
H.
,
Tang
,
Z.
,
Wang
,
Z.
,
Pan
,
S.
,
Han
,
Z.
,
Sun
,
C.
,
Zhang
,
M.
,
Duan
,
X.
, and
Pang
,
W.
(
2018
). “
Acoustic streaming and microparticle enrichment within a microliter droplet using a Lamb-wave resonator array
,”
Phys. Rev. Appl.
9
(
6
),
064011
.
46.
Zhang
,
M.
,
He
,
S.
,
Pang
,
W.
,
Wei
,
W.
,
Zhou
,
F.
,
Wu
,
X.
,
Qi
,
H.
,
Duan
,
X.
, and
Wang
,
Y.
(
2022
). “
On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing
,”
Talanta
245
,
123462
.
47.
Zuo
,
C.
,
Van der Spiegel
,
J.
, and
Piazza
,
G.
(
2010
). “
1.05-GHz CMOS oscillator based on lateral-field-excited piezoelectric AlN contour-mode MEMS resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
1
),
82
87
.
You do not currently have access to this content.