The mechanical properties of soft biological tissues can be characterized non-invasively by magnetic resonance elastography (MRE). In MRE, shear wave fields are induced by vibration, imaged by magnetic resonance imaging, and inverted to estimate tissue properties in terms of the parameters of an underlying material model. Most MRE studies assume an isotropic material model; however, biological tissue is often anisotropic with a fibrous structure, and some tissues contain two or more families of fibers—each with different orientations and properties. Motivated by the prospect of using MRE to characterize such tissues, this paper describes the propagation of shear waves in soft fibrous material with two unequal fiber families. Shear wave speeds are expressed in terms of material parameters, and the effect of each parameter on the shear wave speeds is investigated. Analytical expressions of wave speeds are confirmed by finite element simulations of shear wave transmission with various polarization directions. This study supports the feasibility of estimating parameters of soft fibrous tissues with two unequal fiber families in vivo from local shear wave speeds and advances the prospects for the mechanical characterization of such biological tissues by MRE.

1.
Anderson
,
A. T.
,
Van Houten
,
E. E. W.
,
McGarry
,
M. D. J.
,
Paulsen
,
K. D.
,
Holtrop
,
J. L.
,
Sutton
,
B. P.
,
Georgiadis
,
J. G.
, and
Johnson
,
C. L.
(
2016
). “
Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography
,”
J. Mech. Behav. Biomed. Mater.
59
,
538
546
.
2.
Brannon
,
R. M.
(
2018
).
Rotation, Reflection, and Frame Changes: Orthogonal Tensors in Computational Engineering Mechanics
(
IOP Publishing, Bristol, UK
).
3.
Chapman
,
C.
(
2004
).
Fundamentals of Seismic Wave Propagation
(
Cambridge University Press, Cambridge, UK
).
4.
Crutison
,
J.
,
Sun
,
M.
, and
Royston
,
T. J.
(
2022
). “
The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography
,”
J. Acoust. Soc. Am.
151
,
2403
2413
.
5.
Drumheller
,
D. S.
(
1998
).
Introduction to Wave Propagation in Nonlinear Fluids and Solids
(
Cambridge University Press, Cambridge, UK
).
6.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Namani
,
R.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
(
2013
). “
Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter
,”
J. Mech. Behav. Biomed. Mater.
23
,
117
132
.
7.
Guertler
,
C. A.
,
Okamoto
,
R. J.
,
Schmidt
,
J. L.
,
Badachhape
,
A. A.
,
Johnson
,
C. L.
, and
Bayly
,
P. V.
(
2018
). “
Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography
,”
J. Biomech.
69
,
10
18
.
8.
Guo
,
J.
,
Bertalan
,
G.
,
Meierhofer
,
D.
,
Klein
,
C.
,
Schreyer
,
S.
,
Steiner
,
B.
,
Wang
,
S.
,
Vieira da Silva
,
R.
,
Infante-Duarte
,
C.
,
Koch
,
S.
,
Boehm-Sturm
,
P.
,
Braun
,
J.
, and
Sack
,
I.
(
2019
). “
Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity
,”
Acta Biomater.
99
,
433
442
.
9.
Hiscox
,
L. V.
,
Johnson
,
C. L.
,
McGarry
,
M. D. J.
,
Marshall
,
H.
,
Ritchie
,
C. W.
,
van Beek
,
E. J. R.
,
Roberts
,
N.
, and
Starr
J. M.
(
2020
). “
Mechanical property alterations across the cerebral cortex due to Alzheimer's disease
,”
Brain Commun.
2
,
fcz049
.
10.
Holzapfel
,
G. A.
(
2000
).
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
(
Wiley, Chichester, UK
).
11.
Hou
,
Z.
,
Bayly
,
P. V.
, and
Okamoto
,
R. J.
(
2021
). “
Shear wave speeds in nearly-incompressible fibrous materials with two fiber families
,”
J. Acoust. Soc. Am.
149
,
1097
1106
.
12.
Hou
,
Z.
,
Guertler
,
C. A.
,
Okamoto
,
R. J.
,
Chen
,
H.
,
Garbow
,
J. R.
,
Kamilov
,
U. S.
, and
Bayly
,
P. V.
(
2022
). “
Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks
,”
J. Mech. Behav. Biomed. Mater.
126
,
105046
.
13.
Hou
,
Z.
,
Okamoto
,
R. J.
, and
Bayly
,
P. V.
(
2020
). “
Shear wave propagation and estimation of material parameters in a nonlinear, fibrous material
,”
J. Biomech. Eng.
142
,
051010
.
14.
Kennedy
,
P.
,
Barnhill
,
E.
,
Gray
,
C.
,
Brown
,
C.
,
van Beek
,
E. J. R.
,
Roberts
,
N.
, and
Greig
,
C. A.
(
2020
). “
Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults
,”
GeroScience
42
,
311
321
.
15.
Klatt
,
D.
,
Hamhaber
,
U.
,
Asbach
,
P.
,
Braun
,
J.
, and
Sack
,
I.
(
2007
). “
Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: A study of brain and liver viscoelasticity
,”
Phys. Med. Biol.
52
(24),
7281
7294
.
16.
Kuo
,
P.-L.
,
Li
,
P.-C.
, and
Li
,
M.-L.
(
2001
). “
Elastic properties of tendon measured by two different approaches
,”
Ultrasound Med. Biol.
27
,
1275
1284
.
17.
Manduca
,
A.
,
Oliphant
,
T. E.
,
Dresner
,
M. A.
,
Mahowald
,
J. L.
,
Kruse
,
S. A.
,
Amromin
,
E.
,
Felmlee
,
J. P.
,
Greenleaf
,
J.
, and
Ehman
,
R.
(
2001
). “
Magnetic resonance elastography: Non-invasive mapping of tissue elasticity
,”
Med. Image Anal.
5
,
237
254
.
18.
Merodio
,
J.
, and
Ogden
,
R. W.
(
2003
). “
Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation
,”
Int. J. Solids Struct.
40
,
4707
4727
.
19.
Ogden
,
R. W.
(
2013
).
Non-Linear Elastic Deformations
(Dover Publications, New York).
20.
Rossi
,
S.
,
Ruiz-Baier
,
R.
,
Pavarino
,
L. F.
, and
Quarteroni
,
A.
(
2012
). “
Orthotropic active strain models for the numerical simulation of cardiac biomechanics
,”
Numer. Methods Biomed. Eng.
28
,
761
788
.
21.
Royer
,
D.
,
Gennisson
,
J.-L.
,
Deffieux
,
T.
, and
Tanter
,
M.
(
2011
). “
On the elasticity of transverse isotropic soft tissues (L)
,”
J. Acoust. Soc. Am.
129
,
2757
2760
.
22.
Sack
,
I.
,
Beierbach
,
B.
,
Wuerfel
,
J.
,
Klatt
,
D.
,
Hamhaber
,
U.
,
Papazoglou
,
S.
,
Martus
,
P.
, and
Braun
,
J.
(
2009a
). “
The impact of aging and gender on brain viscoelasticity
,”
NeuroImage
46
,
652
657
.
23.
Sack
,
I.
,
Rump
,
J.
,
Elgeti
,
T.
,
Samani
,
A.
, and
Braun
,
J.
(
2009b
). “
MR elastography of the human heart: Noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations
,”
Magn. Reason. Med.
61
,
668
677
.
24.
Smith
,
D. R.
,
Caban-Rivera
,
D. A.
,
Williams
,
L. T.
,
van Houten
,
E. E. W.
,
Bayly
,
P. V.
,
Paulsen
,
K. D.
,
McGarry
,
M. D. J.
, and
Johnson
,
C. L.
(
2023
). “
In vivo estimation of anisotropic mechanical properties of the gastrocnemius during functional loading with MR elastography
,”
Phys. Med. Biol.
68
,
045004
.
25.
Smith
,
D. R.
,
Guertler
,
C. A.
,
Okamoto
,
R. J.
,
Romano
,
A. J.
,
Bayly
,
P. V.
, and
Johnson
,
C. L.
(
2020
). “
Multi-excitation magnetic resonance elastography of the brain: Wave propagation in anisotropic white matter
,”
J. Biomech. Eng.
142
,
071005
.
26.
Spencer
,
A. J. M.
(
2014
).
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
(
CISM International Centre for Mechanical Sciences, Springer
,
Vienna, Austria
).
27.
Volokh
,
K.
(
2016
).
Mechanics of Soft Materials
(
Springer Nature
,
Singapore
).
28.
Volokh
,
K. Y.
(
2011
). “
Modeling failure of soft anisotropic materials with application to arteries
,”
J. Mech. Behav. Biomed. Mater.
4
,
1582
1594
.
29.
Wang
,
S.
,
Guertler
,
C. A.
,
Okamoto
,
R. J.
,
Johnson
,
C. L.
,
McGarry
,
M. D. J.
, and
Bayly
,
P. V.
(
2023
). “
Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig
,”
NeuroImage
277
,
120234
.
30.
Zou
,
Y.
, and
Zhang
,
Y.
(
2011
). “
The orthotropic viscoelastic behavior of aortic elastin
,”
Biomech. Model. Mechanobiol.
10
,
613
625
.

Supplementary Material

You do not currently have access to this content.