In this research, we present a study on the atomization threshold ( A T h) of sessile droplets, analyzing its relationship with the excitation frequency f exc ( 55 48 kHz), droplet volume V drop ( 1 100 μ l), and droplet viscosity μ ( 1 6 mPa s). The investigation focused on the atomization thresholds using ultrasonic excitation of distilled water droplets and water- polyethylene glycol (PEG)-8000 mixtures deposited on vibrating surfaces. The obtained results are compared with previously reported theoretical models. A modification to the model proposed by Alzuaga et al. [Alzuaga, Manceau, and Bastien, J. Sound Vib. 282(1–2), 151–162 (2005)] is suggested to determine the atomization thresholds of sessile droplets, incorporating the atomization droplet size equation proposed by Rajan and Pandit and an empirical constant α to account for the effect of droplet volume in this process. The results show that the relationship between the atomization threshold and viscosity does not fit well with the prediction of Eisenmenger [Acta Acust united Acust. 9(4), 327–340 (1959)] and Pohlman and Stamm [Untersuchung Zum Mechanismus Der Ultraschallvernebelung an Flüssigkeitsoberflächen im Hinblick Auf Technische Anwendungen (Investigation on the Mechanism of Ultrasonic Nebulization on Liquid Surfaces Considering Technical Applications) (VS Verlag für Sozialwissenschaften, Wiesbaden, Germany, 1965)] and Pohlman et al. [Pohlman, Heisler, and Cichos, Ultrasonicc 12(1), 11–15 (1974)] ( A T h μ). However, the data tendency aligns with the model proposed by Alzuaga ( A T h μ 1 / 2). The results obtained in this study provide a deeper understanding of the atomization thresholds of sessile droplets through ultrasonic excitation.

1.
R.
Pohlman
and
K.
Stamm
,
Untersuchung Zum Mechanismus Der Ultraschallvernebelung an Flüssigkeitsoberflächen im Hinblick Auf Technische Anwendungen
(Investigation on the Mechanism of Ultrasonic Nebulization on Liquid Surfaces Considering Technical Applications) (
VS Verlag für Sozialwissenschaften
,
Wiesbaden, Germany
,
1965
).
2.
S.
Rahemi Ardekani
,
A.
Sabour Rouh Aghdam
,
M.
Nazari
,
A.
Bayat
,
E.
Yazdani
, and
E.
Saievar-Iranizad
, “
A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter
,”
J. Anal. Appl. Pyrol.
141
,
104631
(
2019
).
3.
S. R.
Ardekani
,
A. S.
Rouhaghdam
, and
M.
Nazari
, “
N-doped ZnO-CuO nanocomposite prepared by one-step ultrasonic spray pyrolysis and its photocatalytic activity
,”
Chem. Phys. Lett.
705
,
19
22
(
2018
).
4.
P. K. Samal and J. W. Newkirk, ASM Handbook, Volume 7: Powder Metallurgy (ASM International, Materials Park, OH, 2015).
5.
O. K. Eknadiosyants, “Aerosol production,” in Physical Principles of Ultrasonics Technology, edited by L. D. Rozenberg (Plenum Press, New York,
1973
), Vol. 2, pp.
3
88
(1973).
6.
A.
Abdullah
,
M.
Shahini
, and
A.
Pak
, “
An approach to design a high power piezoelectric ultrasonic transducer
,”
J. Electroceram.
22
,
369
382
(
2009
).
7.
R. W.
Wood
and
A. L.
Loomis
, “
XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
4
(
22
),
417
436
(
1927
).
8.
R. J.
Lang
, “
Ultrasonic atomization of liquids
,”
J. Acoust. Soc. Am.
34
(
1
),
6
8
(
1962
).
9.
R.
Rajan
and
A. B.
Pandit
, “
Correlations to predict droplet size in ultrasonic atomisation
,”
Ultrasonics
39
(
4
),
235
255
(
2001
).
10.
B.
Avvaru
,
M. N.
Patil
,
P. R.
Gogate
, and
A. B.
Pandit
, “
Ultrasonic atomization: Effect of liquid phase properties
,”
Ultrasonics
44
(
2
),
146
158
(
2006
).
11.
K.
Bauckhage
,
O.
Andersen
,
S.
Hansmann
,
W.
Reich
, and
P.
Schreckenberg
, “
Production of fine powders by ultrasonic standing wave atomization
,”
Powder Technol.
86
(
1
),
77
86
(
1996
).
12.
O.
Andersen
,
S.
Hansmann
, and
K.
Bauckhage
, “
Production of fine particles from melts of metals or highly viscous fluids by ultrasonic standing wave atomization
,”
Part. Part. Syst. Charact.
13
(
3
),
217
223
(
1996
).
13.
N.
Ashgriz
and
M.
Movassat
, “Oscillation of droplets and bubbles,” in
Handbook of Atomization and Sprays: Theory and Applications
(
Springer US
,
Boston, MA
,
2011
), pp. 125–144.
14.
A. J.
James
,
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Vibration-induced drop atomization and bursting
,”
J. Fluid Mech.
476
,
1
28
(
2003
).
15.
X.
Noblin
,
A.
Buguin
, and
F.
Brochard-Wyart
, “
Vibrated sessile drops: Transition between pinned and mobile contact line oscillations
,”
Eur. Phys. J. E
14
(
4
),
395
404
(
2004
).
16.
X.
Noblin
,
A.
Buguin
, and
F.
Brochard-Wyart
, “
Vibrations of sessile drops
,”
Eur. Phys. J. Spec. Top.
166
(
1
),
7
10
(
2009
).
17.
S.
Alzuaga
,
J.-F.
Manceau
, and
F.
Bastien
, “
Motion of droplets on solid surface using acoustic radiation pressure
,”
J. Sound Vib.
282
(
1–2
),
151
162
(
2005
).
18.
V. I.
Sorokin
, “
The effect of fountain formation at the surface of a vertically oscillating liquid
,”
Sov. Phys. Acoust.
3
,
281
291
(
1957
).
19.
W.
Eisenmenger
, “
Dynamic properties of the surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10 Kc/s to 1.5 Mc/s
,”
Acta Acust. united Acust.
9
(
4
),
327
–340 (
1959
).
20.
R.
Pohlman
,
K.
Heisler
, and
M.
Cichos
, “
Powdering aluminium and aluminium alloys by ultrasound
,”
Ultrasonics
12
(
1
),
11
15
(
1974
).
21.
C. L.
Goodridge
,
W. T.
Shi
,
H. G. E.
Hentschel
, and
D. P.
Lathrop
, “
Viscous effects in droplet-ejecting capillary waves
,”
Phys. Rev. E
56
(
1
),
472
475
(
1997
).
22.
M.
Dobre
and
L.
Bolle
,
Visualisation and Analysis of Liquid Film Surface Patterns Formed on Ultrasonic Atomisers
(
ILASS
,
Toulouse, France
,
1999
), pp. 1–6.
23.
L.
Gaete-Garretón
,
D.
Briceño-Gutiérrez
,
Y.
Vargas-Hernández
, and
C.
Zanelli
, “
Ultrasonic atomization of distilled water
,”
J. Acoust. Soc. Am.
144
(
1
),
222
227
(
2018
).
24.
R. L.
Peskin
and
R. J.
Raco
, “
Ultrasonic atomization of liquids
,”
J. Acoust. Soc. Am.
35
(
9
),
1378
1381
(
1963
).
25.
S.
Sherrit
,
H. D.
Wiederick
, and
B. K.
Mukherjee
, “
Accurate equivalent circuits for unloaded piezoelectric resonators
,” in
1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. no. 97CH36118)
, Vol.
2
, pp.
931
935
.
26.
R.
Queirós
,
P. S.
Girão
, and
A. C.
Serra
, “
Single-mode piezoelectric ultrasonic transducer equivalent circuit parameter calculations and optimization using experimental data
” (
2005
), p.
468
471
.
27.
P.
Gonzalez-Tello
,
F.
Camacho
, and
G.
Blazquez
, “
Density and viscosity of concentrated aqueous solutions of polyethylene glycol
,”
J. Chem. Eng. Data
39
(
3
),
611
614
(
1994
).
28.
L.
Gaete-Garretón
,
Y.
Vargas-Hernandez
,
J.
Meneses-Diaz
, and
N.
Candia-Muñoz
, “
Atomization threshold in a layer of distilled water
,”
Proc. Mtgs. Acoust.
32
(
1
),
030009
(
2017
).
You do not currently have access to this content.