An algorithm is developed for fully nonlinear three-dimensional (3D) simulation of a difference-frequency acoustic beam resulting from the interaction of two high-intensity pump waves. Simulations are performed in the frequency domain based on the Khokhlov–Zabolotskaya–Kuznetsov equation. A spectrum filtering method is used to enable accurate solutions for the difference-frequency fields in strongly nonlinear beams and with a high downshift frequency ratio using only dozens of spectral components retained in the algorithm. As an example, the dual-frequency operation of an underwater multi-element ellipsoidal array is considered, and numerical solutions describing parametric interactions in the array field are analyzed. It is shown that difference-frequency beams are more symmetric in transverse directions compared with the pump beams. The most efficient parametric generation of difference-frequency beams corresponded to close and beyond shock-forming conditions. Axial pressure amplitude of the difference frequency was shown to grow first quadratically with the source pressure following the quasi-linear solution and then linearly once shocks start to develop. The percentage of the total power converted to the difference frequency from pump waves increased at high power outputs without saturation. Up to twofold increase in directivity angles of difference-frequency beams under shock-forming conditions was observed compared with quasi-linear conditions.

1.
H.
Zhou
,
S. H.
Huang
, and
W.
Li
, “
Parametric acoustic array and its application in underwater acoustic engineering
,”
Sensors
20
,
2148
(
2020
).
2.
I. B.
Esipov
and
O. E.
Popov
, “
Role of the speed of sound's dispersion in improving the efficiency of a parametric antenna in a shallow waveguide
,”
Bull. Russ. Acad. Sci. Phys.
84
,
638
643
(
2020
).
3.
W.-S.
Gan
,
J.
Yang
, and
T.
Kamakura
, “
A review of parametric acoustic array in air
,”
Appl. Acoust.
73
,
1211
1219
(
2012
).
4.
M.
Arnela
,
O.
Guasch
,
P.
Sánchez-Martín
,
J.
Camps
,
R. M.
Alsina-Pagès
, and
C.
Martínez-Suquía
, “
Construction of an omnidirectional parametric loudspeaker consisting in a spherical distribution of ultrasound transducers
,”
Sensors
18
,
4317
(
2018
).
5.
J.
Zhong
,
R.
Kirby
, and
X.
Qiu
, “
The near field, Westervelt far field, and inverse-law far field of the audio sound generated by parametric array loudspeakers
,”
J. Acoust. Soc. Am.
149
,
1524
1535
(
2021
).
6.
M.
Červenka
and
M.
Bednařík
, “
A versatile computational approach for the numerical modeling of parametric acoustic array
,”
J. Acoust. Soc. Am.
146
,
2163
2169
(
2019
).
7.
M. W.
Urban
,
A.
Alizad
,
W.
Aquino
,
J. F.
Greenleaf
, and
M.
Fatemi
, “
A review of vibro-acoustography and its applications in medicine
,”
Curr. Med. Imaging
7
,
350
359
(
2011
).
8.
I.
Esipov
,
K.
Naugolnykh
, and
V.
Timoshenko
, “
The parametric array and long-range ocean research
,”
Acoust. Today
6
,
20
26
(
2010
).
9.
J. S.
von Deimling
,
P.
Held
,
P.
Feldens
, and
D.
Wilken
, “
Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection
,”
Geo-Mar. Lett.
36
,
113
119
(
2016
).
10.
Y.
Cheng
,
A.
Zhao
,
J.
Hui
,
T.
An
, and
B.
Zhou
, “
Parametric underwater transmission based on pattern time delay shift coding system
,”
Math. Probl. Eng.
2018
,
8249245
(
2018
).
11.
L. H.
Tong
,
S. K.
Lai
,
J. W.
Yan
, and
C.
Li
, “
Highly directional acoustic waves generated by a horned parametric acoustic array loudspeaker
,”
J. Vib. Acoust.
141
,
011012
(
2019
).
12.
K.
Tanaka
,
C.
Shi
, and
Y.
Kajikawa
, “
Binaural active noise control using parametric array loudspeakers
,”
Appl. Acoust.
116
,
170
176
(
2017
).
13.
C.
Shi
and
W.-S.
Gan
, “
Development of a parametric loudspeaker: A novel directional sound generation technology
,”
IEEE Potentials
29
,
20
24
(
2010
).
14.
D. H.
Kim
,
Y. S.
Kwon
,
D.-H.
Kang
,
S.
Shim
,
J. H.
Park
, and
B. C.
Lee
, “
Difference-frequency-based ultrasonic contrast imaging of material elasticities
,” in
Proceedings of the 2022 IEEE International Ultrasonics Symposium
, Venice, Italy (
IEEE
,
New York
, October 10–13,
2022
), pp.
1
4
.
15.
S.-Y.
Chiou
,
F.
Forsberg
,
T. B.
Fox
, and
L.
Needleman
, “
Comparing differential tissue harmonic imaging with tissue harmonic and fundamental gray scale imaging of the liver
,”
J. Ultrasound Med.
26
,
1557
1563
(
2007
).
16.
F.
Forsberg
,
M.
Stanczak
,
J. K.
Sinanan
, and
R.
Blackman
, “
Second-generation differential tissue harmonic imaging improves the visualization of renal lesions
,”
J. Ultrasound Med.
42
,
853
857
(
2022
).
17.
Y.
Li
,
D.
Polyak
,
E.
Johnson
,
D.
Yecies
,
S.
Shevidi
,
A.
de la Zerda
,
M. H.
Gephart
, and
S.
Chu
, “
Difference-frequency ultrasound imaging with non-linear contrast
,”
IEEE Trans. Med. Imaging
39
,
1759
1766
(
2020
).
18.
P. J.
Westervelt
, “
Parametric acoustic array
,”
J. Acoust. Soc. Am.
35
,
535
537
(
1963
).
19.
V.
Zverev
, “
How the idea of a parametric acoustic array was conceived
,”
Acoust. Phys.
45
,
685
692
(
1999
).
20.
B. K.
Novikov
,
O. V.
Rudenko
, and
V. I.
Timoshenko
,
Nonlinear Underwater Acoustics
(
AIP
,
New York
,
1987
), Chaps. 5, 6, and 8.
21.
M. F.
Hamilton
, “
Sound beams
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic Press
,
San Diego
, CA,
1998
), Chaps. 8.
22.
E. A.
Zabolotskaya
and
R. V.
Khokhlov
, “
Quasi-plane waves in the nonlinear acoustics of confined beams
,”
Sov. Phys. Acoust.
15
,
35
40
(
1969
).
23.
J. N.
Tjøtta
,
S.
Tjøtta
, and
E. H.
Vefring
, “
Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beams
,”
J. Acoust. Soc. Am.
89
,
1017
1027
(
1991
).
24.
S. I.
Aanonsen
, “
Numerical computation of the nearfield of a finite amplitude sound beam
,”
Technical Report 73
,
Department of Mathematics, University of Bergen
,
Bergen, Norway
(
1983
).
25.
M. F.
Hamilton
,
J. N.
Tjøtta
, and
S.
Tjøtta
, “
Nonlinear effects in the farfield of a directive sound source
,”
J. Acoust. Soc. Am.
78
,
202
216
(
1985
).
26.
P. T.
Christopher
and
K. J.
Parker
, “
New approaches to nonlinear diffractive field propagation
,”
J. Acoust. Soc. Am.
90
,
488
499
(
1991
).
27.
V. A.
Khokhlova
,
R.
Souchon
,
J.
Tavakkoli
,
O. A.
Sapozhnikov
, and
D.
Cathignol
, “
Numerical modeling of finite amplitude sound beams: Shock formation in the nearfield of a cw plane piston source
,”
J. Acoust. Soc. Am.
110
,
95
108
(
2001
).
28.
E. A.
Filonenko
and
V. A.
Khokhlova
, “
Effect of acoustic nonlinearity on heating of biological tissue induced by high intensity focused ultrasound
,”
Acoust. Phys.
47
,
468
475
(
2001
).
29.
Y.-S.
Lee
and
M. F.
Hamilton
, “
Time-domain modeling of pulsed finite-amplitude sound beams
,”
J. Acoust. Soc. Am.
97
,
906
917
(
1995
).
30.
J.
Tavakkoli
,
D.
Cathignol
,
R.
Souchon
, and
O. A.
Sapozhnikov
, “
Modeling of pulsed finite-amplitude focused sound beams in time domain
,”
J. Acoust. Soc. Am.
104
,
2061
2072
(
1998
).
31.
N. S.
Bakhvalov
,
Y. M.
Zhileikin
, and
E. A.
Zabolotskaya
,
Nonlinear Theory of Sound Beams
(
AIP
,
New York
,
1987
).
32.
F. M.
Pestorius
, “
Propagation of plane acoustic noise of finite amplitude
,”
Technical Report ARL-TR-7323
,
Applied Research Laboratory, University of Texas at Austin
,
Austin
(
1973
).
33.
T.
Christopher
, “
A nonlinear plane-wave algorithm for diffractive propagation involving shock waves
,”
J. Comp. Acoust.
01
,
371
393
(
1993
).
34.
V. A.
Khokhlova
,
A. E.
Ponomarev
,
M. A.
Averkiou
, and
L. A.
Crum
, “
Nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers
,”
Acoust. Phys.
52
,
481
489
(
2006
).
35.
O. V.
Bessonova
,
V. A.
Khokhlova
,
M. R.
Bailey
,
M. S.
Canney
, and
L. A.
Crum
, “
Focusing of high power ultrasound beams and limiting values of shock wave parameters
,”
Acoust. Phys.
55
,
463
473
(
2009
).
36.
T.
Kamakura
,
N.
Hamada
,
K.
Aoki
, and
Y.
Kumamoto
, “
Nonlinearly generated spectral components in the nearfield of a directive sound source
,”
J. Acoust. Soc. Am.
85
,
2331
2337
(
1989
).
37.
J. N.
Tjøtta
,
S.
Tjøtta
, and
E. H.
Vefring
, “
Propagation and interaction of two collimated finite amplitude sound beams
,”
J. Acoust. Soc. Am.
88
,
2859
2870
(
1990
).
38.
M. A.
Averkiou
,
Y.-S.
Lee
, and
M. F.
Hamilton
, “
Self-demodulation of amplitude- and frequency-modulated pulses in a thermoviscous fluid
,”
J. Acoust. Soc. Am.
94
,
2876
2883
(
1993
).
39.
T.
Kamakura
,
M.
Tani
,
Y.
Kumamoto
, and
K.
Ueda
, “
Harmonic generation in finite amplitude sound beams from a rectangular aperture source
,”
J. Acoust. Soc. Am.
91
,
3144
3151
(
1992
).
40.
M. B.
Moffett
and
R. H.
Mellen
, “
Model for parametric acoustic sources
,”
J. Acoust. Soc. Am.
61
,
325
337
(
1977
).
41.
M. B.
Moffett
,
R. H.
Mellen
, and
W. L.
Konrad
, “
Parametric acoustic sources of rectangular aperture
,”
J. Acoust. Soc. Am.
63
,
1326
1331
(
1978
).
42.
D.
Ding
, “
A simplified algorithm for the second-order sound fields
,”
J. Acoust. Soc. Am.
108
,
2759
2764
(
2000
).
43.
J.
Yang
,
S.
Kan
,
W.-S.
Gan
, and
J.
Tian
, “
A fast field scheme for the parametric sound radiation from rectangular aperture source
,”
Chin. Phys. Lett.
21
,
110
113
(
2004
).
44.
T.
Kamakura
,
M.
Tani
,
Y.
Kumamoto
, and
M. A.
Breazeale
, “
Parametric sound radiation from a rectangular aperture source
,”
Acustica
80
,
332
338
(
1994
).
45.
A. V.
Tyurina
,
P. V.
Yuldashev
,
I. B.
Esipov
, and
V. A.
Khokhlova
, “
Spectral modeling of difference-frequency generation in the case of two-frequency interaction of ultrasound waves
,”
Acoust. Phys.
68
,
130
137
(
2022
).
46.
H. T.
O'Neil
, “
Theory of focusing radiators
,”
J. Acoust. Soc. Am.
21
,
516
526
(
1949
).
47.
R. J.
Zemp
,
J.
Tavakkoli
, and
R. S. C.
Cobbold
, “
Modeling of nonlinear ultrasound propagation in tissue from array transducers
,”
J. Acoust. Soc. Am.
113
,
139
152
(
2003
).
48.
P. V.
Yuldashev
and
V. A.
Khokhlova
, “
Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays
,”
Acoust. Phys.
57
,
334
343
(
2011
).
49.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes
, 3rd ed. (
Cambridge University Press
,
New York
,
2007
), pp.
1052
1053
.
50.
J.-B.
Doc
,
B.
Lihoreau
,
S.
Félix
,
C.
Faure
, and
G.
Dubois
, “
Three-dimensional parabolic equation model for low frequency sound propagation in irregular urban canyons
,”
J. Acoust. Soc. Am.
137
,
310
320
(
2015
).
51.
S. S.
Kashcheeva
,
O. A.
Sapozhnikov
,
V. A.
Khokhlova
,
M. A.
Averkiou
, and
L. A.
Cram
, “
Nonlinear distortion and attenuation of intense acoustic waves in lossy media obeying a frequency power law
,”
Acoust. Phys.
46
,
170
177
(
2000
).
52.
A. V.
Tyurina
,
P. V.
Yuldashev
,
I. B.
Esipov
, and
V. A.
Khokhlova
, “
Quasilinear approximation for modeling difference-frequency acoustic wave in a diffracting pump wave beam
,”
Acoust. Phys.
69
,
30
39
(
2023
).
53.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
, 3rd ed. (
Springer
,
New York
,
2019
), pp.
32
36
.
54.
A. D.
Maxwell
,
P. V.
Yuldashev
,
W.
Kreider
,
T. D.
Khokhlova
,
G. R.
Schade
,
T. L.
Hall
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
V. A.
Khokhlova
, “
A prototype therapy system for transcutaneous application of boiling histotripsy
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
64
,
1542
1557
(
2017
).
55.
J. W.
Goodman
,
Introduction to Fourier Optics
, 2nd ed. (
McGraw-Hill
,
New York
,
1996
), pp.
4
31
.
56.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
,”
J. Comp. Phys.
160
,
241
282
(
2000
).
57.
I. B.
Esipov
,
O. E.
Popov
,
G. V.
Kenigsberger
, and
I. I.
Sizov
, “
A parametric antenna for hydrophysical research on long-distance paths
,”
Bull. Russ. Acad. Sci. Phys.
80
,
1209
1217
(
2016
).
58.
I. B.
Esipov
,
O. E.
Popov
, and
G. V.
Soldatov
, “
Compression of a parametric array signal in a shallow-water waveguide
,”
Acoust. Phys.
65
,
391
398
(
2019
).
You do not currently have access to this content.