The orbital angular momentum (OAM) wave has shown great potential for improving radar imaging and underwater communication performance due to its helical wavefront phase and infinite orthogonal modes. However, there are currently no known applications of this technology in underwater imaging. In this paper, we employed acoustic OAM wave for underwater imaging and established transceiver signal models using the uniform circular array. We concurrently achieved two-dimensional imaging of azimuth and elevation angles, which differs from radar imaging. We proposed a matching process for the echo signal in the modal domain, the OAM wave beam image's sidelobe decreased by 7.9 dB in the elevation direction and 6.1 dB in the azimuth direction compared to the plane wave, with the mainlobe decreased by 0.2° in the elevation direction and 0.4° in the azimuth direction. Furthermore, this paper introduced OAM wave high-resolution image reconstruction based on the orthogonal matching pursuit (OMP) algorithm. Finally, we implemented broadband acoustic OAM wave for underwater imaging and introduced an image reconstruction method based on the modal domain OMP algorithm. Simulation results demonstrate that the use of OAM wave in underwater imaging is feasible, and the proposed scheme can achieve high-resolution imaging.

1.
Broadbent
,
E. G.
, and
Moore
,
D. W.
(
1997
). “
Acoustic destablilization of vortices
,”
Philos. Trans. R. Soc. London, Ser. A
290
,
353
371
.
2.
Bu
,
X.-X.
,
Zhang
,
Z.
,
Chen
,
L.-Y.
,
Zhu
,
K.-H.
,
Zhou
,
S.
,
Luo
,
J.-P.
,
Cheng
,
R.
, and
Liang
,
X.-D.
(
2019
). “
Synthetic aperture radar interferometry based on vortex electromagnetic waves
,”
IEEE Access
7
,
82693
82700
.
3.
Capon
,
J.
(
1969
). “
High-resolution frequency-wavenumber spectrum analysis
,”
Proc. IEEE
57
,
1408
1418
.
4.
Chi
,
C.
,
Li
,
Z.
, and
Li
,
Q.
(
2016
). “
Ultrawideband underwater real-time 3-D acoustical imaging with ultrasparse arrays
,”
IEEE. J. Oceanic. Eng.
42
,
97
108
.
5.
Demore
,
C. E. M.
,
Yang
,
Z.
,
Volovick
,
A.
,
Cochran
,
S.
,
MacDonald
,
M. P.
, and
Spalding
,
G. C.
(
2012
). “
Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams
,”
Phys. Rev. Lett.
108
,
194301
.
6.
Guo
,
G.
, and
Hu
,
W.
(
2013
). “
Electromagnetic vortex based radar target imaging
,”
J. Nat. Univ. Defense Technol.
35
,
71
76
.
7.
Guo
,
G.
,
Li
,
X.
,
Wang
,
Q.
,
Li
,
Y.
,
Chu
,
H.
,
Ma
,
Q.
,
Tu
,
J.
, and
Zhang
,
D.
(
2021
). “
Spectrum decomposition-based orbital angular momentum communication of acoustic vortex beams using single-ring transceiver arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
68
,
1399
1407
.
8.
Guo
,
Z.
,
Liu
,
H.
,
Zhou
,
H.
,
Zhou
,
K.
,
Wang
,
S.
,
Shen
,
F.
,
Gong
,
Y.
,
Gao
,
J.
,
Liu
,
S.
, and
Guo
,
K.
(
2019
). “
High-order acoustic vortex field generation based on a metasurface
,”
Phys. Rev. E.
100
,
053315
.
9.
Hefner
,
B. T.
, and
Marston
,
P. L.
(
1999
). “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
,
3313
3316
.
10.
Jiang
,
X.
,
Li
,
Y.
,
Liang
,
B.
,
Cheng
,
J.
, and
Zhang
,
L.
(
2016
). “
Convert acoustic resonances to orbital angular momentum
,”
Phys. Rev. Lett.
117
,
034301
.
11.
Jiang
,
Y.
,
Liu
,
K.
,
Wang
,
H.
,
Deng
,
B.
, and
Zhuang
,
Z.
(
2018
). “
Orbital-angular-momentum-based ISAR imaging at terahertz frequencies
,”
IEEE Sens. J.
18
,
9230
9235
.
12.
Kim
,
J. M.
,
Lee
,
O. K.
, and
Ye
,
J. C.
(
2012
). “
Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing
,”
IEEE Trans. Inform. Theory
58
,
278
301
.
13.
Li
,
R.
,
Hu
,
H.
,
Lei
,
S.
,
Lin
,
Z.
, and
Chen
,
B.
(
2019
). “
Elevation imaging based on vortex electromagnetic wave
,” in
Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
, July 7–12, Atlanta, GA, pp.
827
828
.
14.
Li
,
X.
,
Li
,
Y.
,
Ma
,
Q.
,
Guo
,
G.
,
Tu
,
J.
, and
Zhang
,
D.
(
2020
). “
Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays
,”
J. Appl. Phys.
127
,
124902
.
15.
Li
,
Y.
,
Wang
,
Q.
,
Zheng
,
H.
,
Guo
,
G.
,
Ma
,
Q.
, and
Gong
,
X.
(
2016
). “
Optimization and manipulation of acoustical vortices generated by annularly distributed sparse sources
,”
Acta. Acust.
41
,
704
712
.
16.
Liu
,
K.
,
Li
,
X.
,
Gao
,
Y.
,
Cheng
,
Y.
,
Wang
,
H.
, and
Qin
,
Y.
(
2017
). “
High-resolution electromagnetic vortex imaging based on sparse Bayesian learning
,”
IEEE Sens. J.
17
,
6918
6927
.
17.
Lu
,
W.
,
Sun
,
H.
, and
Lan
,
Y.
(
2022
). “
Emission of underwater acoustic orbital angular momentum and data transmission
,”
Chin. J. Acoust.
41
,
20
34
.
18.
Lv
,
K.
,
Zhu
,
G.
,
Ma
,
H.
,
Liu
,
H.
,
Shao
,
S.
, and
Wei
,
J.
(
2021
). “
Three-dimensional imaging using the electromagnetic vortex synthetic aperture radar
,” in
Proceedings of the 2021 CIE International Conference on Radar (Radar
), December 15–19, Haikou, China, pp.
268
272
.
19.
Mallat
,
S. G.
, and
Zhang
,
Z.
(
1993
). “
Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
.
20.
Marchiano
,
R.
, and
Thomas
,
J.-L.
(
2005
). “
Synthesis and analysis of linear and nonlinear acoustical vortices
,”
Phys. Rev. E
71
,
066616
.
21.
Nye
,
J. F.
,
Berry
,
M. V.
, and
Frank
,
F. C.
(
1974
). “
Dislocations in wave trains
,”
Proc. R. Soc. London A
336
,
165
190
.
22.
Pati
,
Y. C.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P. S.
(
1993
). “
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
,” in
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
, November 1–3, Pacific Grove, CA, pp.
40
44
.
23.
Rebollo-Neira
,
L.
(
2007
). “
Oblique matching pursuit
,”
IEEE Signal Process. Lett.
14
,
703
706
.
24.
Schmidt
,
R.
(
1986
). “
Multiple emitter location and signal parameter estimation
,”
IEEE Trans. Antennas Propagat.
34
,
276
280
.
25.
Shi
,
C.
,
Dubois
,
M.
,
Wang
,
Y.
, and
Zhang
,
X.
(
2017
). “
High-speed acoustic communication by multiplexing orbital angular momentum
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
7250
7253
.
26.
Tamburini
,
F.
,
Mari
,
E.
,
Thidé
,
B.
,
Barbieri
,
C.
, and
Romanato
,
F.
(
2011
). “
Experimental verification of photon angular momentum and vorticity with radio techniques
,”
Appl. Phys. Lett.
99
,
204102
.
27.
Thidé
,
B.
,
Then
,
H.
,
Sjöholm
,
J.
,
Palmer
,
K.
,
Bergman
,
J.
,
Carozzi
,
T. D.
,
Istomin
,
Y. N.
,
Ibragimov
,
N. H.
, and
Khamitova
,
R.
(
2007
). “
Utilization of photon orbital angular momentum in the low-frequency radio domain
,”
Phys. Rev. Lett.
99
,
087701
.
28.
Trichili
,
A.
,
Park
,
K.-H.
,
Zghal
,
M.
,
Ooi
,
B. S.
, and
Alouini
,
M.-S.
(
2019
). “
Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives
,”
IEEE Commun. Surv. Tutorials
21
,
3175
3203
.
29.
Wang
,
J.
,
Liu
,
K.
,
Cheng
,
Y.
, and
Wang
,
H.
(
2019
). “
Three-dimensional target imaging based on vortex stripmap SAR
,”
IEEE Sens. J.
19
,
1338
1345
.
30.
Wang
,
J.
,
Liu
,
K.
,
Liu
,
H.
,
Cao
,
K.
,
Cheng
,
Y.
, and
Wang
,
H.
(
2021
). “
3-D object imaging method with electromagnetic vortex
,”
IEEE Trans. Geosci. Remote Sens.
60
,
2000512
.
31.
Wang
,
T.
,
Ke
,
M.
,
Li
,
W.
,
Yang
,
Q.
,
Qiu
,
C.
, and
Liu
,
Z.
(
2016
). “
Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure
,”
Appl. Phys. Lett.
109
,
123506
.
32.
Wang
,
Y.
,
Leus
,
G.
, and
Pandharipande
,
A.
(
2009
). “
Direction estimation using compressive sampling array processing
,” in
Proceedings of the 2009 IEEE/SP 15th Workshop on Statistical Signal Processing
, August 31–September 3, Cardiff, UK, pp.
626
629
.
33.
Yang
,
L.-L.
(
2007
). “
Time-hopping multicarrier code-division multiple access
,”
IEEE Trans. Veh. Technol.
56
,
731
741
.
34.
Yang
,
T.
,
Li
,
S.
,
Xu
,
O.
,
Li
,
W.
, and
Wang
,
Y.
(
2018
). “
Three dimensional SAR imaging based on vortex electromagnetic waves
,”
Remote. Sens. Lett.
9
,
343
352
.
35.
Ye
,
L.
,
Qiu
,
C.
,
Lu
,
J.
,
Tang
,
K.
,
Jia
,
H.
,
Ke
,
M.
,
Peng
,
S.
, and
Liu
,
Z.
(
2016
). “
Making sound vortices by metasurfaces
,”
AIP Adv.
6
,
085007
.
36.
Yuan
,
T.
,
Liu
,
H.
,
Cheng
,
Y.
,
Qin
,
Y.
, and
Wang
,
H.
(
2016
). “
Orbital-angular-momentum-based electromagnetic vortex imaging by least-squares method
,” in
Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
, July 10–15, Beijing, China, pp.
6645
6648
.
37.
Zeng
,
Y.
,
Wang
,
Y.
,
Chen
,
Z.
,
Zhang
,
J.
, and
Zhang
,
J.
(
2020
). “
Two-dimensional OAM radar imaging using uniform circular antenna arrays
,” in
Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP)
, March 15–20, Copenhagen, Denmark, pp.
1
4
.
38.
Zhou
,
H.
,
Li
,
J.
,
Guo
,
K.
, and
Guo
,
Z.
(
2019
). “
Generation of acoustic vortex beams with designed Fermat's spiral diffraction grating
,”
J. Acoust. Soc. Am.
146
,
4237
4243
.
You do not currently have access to this content.