Shooting sound in practical situations with propagation distances up to 300 m is investigated by means of model calculations and measurements. The results illustrate uncertainties in the model calculations for practical situations. The measurements were performed with various small-caliber weapons. Microphones were placed at positions screened by a noise barrier, and also at unscreened positions. The measured signals contain muzzle sound and bullet sound. The model calculations for muzzle sound and bullet sound take into account emission spectra and various propagation attenuation terms, including ground attenuation and barrier attenuation. The bullet sound model is based on a nonlinear theory of N waves generated by supersonic projectiles. For the unscreened situation, model and measurement results show that the sound levels are considerably reduced by ground attenuation. Ground-level variations and ground roughness in the measurement area play an important role. At a 300 m distance, the A-weighted bullet sound level is higher than the A-weighted muzzle sound level, which underlines the importance of bullet sound. For the screened situation, model and measurement results are used to analyze diffraction of bullet sound by the horizontal and vertical edges of the barrier. The diffraction is explained by considering Fresnel zones on the bullet trajectory.

1.
F. H. A.
van den Berg
,
J.
Vos
,
E. M.
Salomons
, and
H. E. A.
Brackenhoff
, “
Handleiding ter bepaling van de geluidbelasting ten gevolge van schietactiviteiten
” (“Manual for determination of the sound burden as a consequence of shooting activities”) (
2011
) (in Dutch), available at https://wetten.overheid.nl/BWBR0022830/2023-10-26#Bijlage9.
2.
E. M.
Salomons
and
F. H. A.
van den Berg
, “
Measurement and computations of shooting noise. Part 1: Muzzle noise
,”
J. Acoust. Soc. Am.
105
,
1133
(
1999
).
3.
F. H. A.
van den Berg
and
E. M.
Salomons
, “
Measurement and computations of shooting noise. Part 2: Bullet noise
,”
J. Acoust. Soc. Am.
105
,
1133
(
1999
).
4.
ISO 17201-4
, “
Acoustics—Noise from shooting ranges—Part 4: Prediction of projectile sound
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2006
), available at https://www.iso.org/standard/30579.html (Last viewed January 26, 2024).
5.
A. D.
Pierce
,
Acoustics. An Introduction to Its Physical Principles and Applications
(
AIP
,
New York
,
1991
), Chap. 11.
6.
N. A.
Kinneging
and
F. H. A.
van den Berg
, “
A computational model for long range propagation of bullet noise
,” in
Proceedings of Internoise
,
Liverpool, England
(July 30–August 2) (INCE, Reston, VA,
1996
), pp.
573
578
.
7.
F.
van den Berg
,
N.
Kinneging
, and
E.
Salomons
, “
An overview of a method to predict average propagation of shooting noise in order to create computer generated contours around shooting ranges
,” in
Proceedings of Internoise
,
Liverpool, England
(July 30–Augiust 2) (INCE, Reston, VA,
1996
), pp.
579
582
.
8.
E. M.
Salomons
, “
A coherent line source in a turbulent atmosphere
,”
J. Acoust. Soc. Am.
105
,
652
657
(
1999
). The expressions for the transition distances in Appendix A follow from Eqs. (17), (27), and (29).
9.
E. M.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer
,
Dordrecht
,
2001
).
10.
E. M.
Salomons
,
F. H. A.
van den Berg
, and
H. E. A.
Brackenhoff
, “
Long-term average sound transfer through the atmosphere: Predictions based on meteorological statistics and numerical computations of sound propagation
,” in
Proceedings of the Sixth International Symposium on Long-Range Sound Propagation
, Ottawa, Canada (June 12–14, 1994) (National Research Council, Ontario, Canada,
1994
), available at https://ncpa.olemiss.edu/long-range-sound-propagation-lrsp/ (Last viewed January 26, 2024).
11.
ISO 13474
, “
Acoustics—Framework for calculating a distribution of sound exposure levels for impulsive sound events for the purposes of environmental noise assessment
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2009
), available at https://www.iso.org/standard/39513.html (Last viewed January 26, 2024).
12.
E. M.
Salomons
, “
Noise barriers in a refracting atmosphere
,”
Appl. Acoust.
47
,
217
238
(
1996
).
13.
ISO 9613-2
, “
Acoustics—Attenuation of sound during propagation outdoors—Part 2: General method of calculation
” (
International Organization for Standardization
,
Geneva, Switzerland
,
1996
), available at https://www.iso.org/standard/20649.html (Last viewed January 26, 2024).
14.
Nordtest method
, “
Shooting ranges: Prediction of noise
,” NT ACOU 099,
2002
, available at http://nordtest.info/images/documents/nt-methods/acoustic/NT%20acou%20099_Shooting%20ranges_Prediction%20of%20noise_Nordtest%20Method.pdf (Last viewed January 26, 2024).
15.
J. M.
Wunderli
,
R.
Pieren
, and
K.
Heutschi
, “
The Swiss shooting sound calculation model sonARMS
,”
Noise Control Engr. J.
60
,
2024
2035
(
2012
).
16.
K. W.
Hirsch
, “
An energy model for projectile sound
,” in
Proceedings of Internoise
,
The Hague, The Netherlands
(August 27–30) (INCE, Reston, VA,
2001
).
17.
A. T.
Wall
,
C. M.
Wagner
,
R. D.
Rasband
,
K. L.
Gee
, and
W. J.
Murphy
, “
Cumulative noise exposure model for outdoor shooting ranges
,”
J. Acoust. Soc. Am.
146
,
3863
3867
(
2019
).
18.
E.
Salomons
,
F.
van der Eerden
, and
F.
van den Berg
, “
Investigation of nonlinear propagation effects on sound from supersonic bullets
,” in
Proceedings of Internoise
,
Glasgow, Scotland
(August 21–24) (INCE, Reston, VA,
2022
).
19.
J. M.
Wunderli
and
K.
Heutschi
, “
Simulation model for sonic boom of projectiles
,”
Acta Acust.
87
,
86
90
(
2001
).
20.
J. M.
Wunderli
and
K.
Heutschi
, “
Shielding effect for sonic boom of projectiles
,”
Acta Acust.
87
,
91
100
(
2001
).
21.
K.
Attenborough
and
T.
Van Renterghem
,
Predicting Outdoor Sound
(
CRC Press
,
Abingdon, UK
,
2021
).
22.
P.
Blanc-Benon
, “
Outdoor sound propagation modelling in complex environments: Recent developments in the parabolic equation method
,” in
Battlefield Acoustic Sensing for ISR Applications
,
Neuilly-sur-Seine, France
(
2006
), Meeting Proceedings RTO-MP-SET-107, paper 21, pp.
21-1
21-16
, available at https://www.sto.nato.int/.
23.
D. K.
Wilson
,
C. L.
Pettit
, and
V. E.
Ostashev
, “
Sound propagation in the atmospheric boundary layer
,”
Acoust. Today
11
,
44
53
(
2015
).
24.
K.
Attenborough
,
I.
Bashir
, and
S.
Taherzadeh
, “
Exploiting ground effects for surface transport noise abatement
,”
Noise Mapp.
3
,
1
25
(
2016
).
25.
F.
van der Eerden
,
P.
Wessel
,
E.
Salomons
, and
F.
van den Berg
, “
Comparison of measurements and calculations of shooting noise variations
,”
Proceedings of Internoise
,
Madrid, Spain
(June 16–19) (INCE, Reston, VA,
2019
).
26.
A.
Emmanuelli
,
D.
Dragna
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Sonic boom propagation over real topography
,”
J. Acoust. Soc. Am.
154
,
16
27
(
2023
).
27.
R.
Stoughton
, “
Measurements of small-caliber ballistic shock waves in air
,”
J. Acoust. Soc. Am.
102
,
781
787
(
1997
).
28.
R. C.
Maher
, “
Modeling and signal processing of acoustic gunshot recordings
,” in
Proceedings of the IEEE Signal Processing Society 12th Digital Signal Processing Workshop
,
Jackson Lake, WY
(April 4, 2006), pp.
257
261
, available at https://www.researchgate.net/publication/224679640_Modeling_and_Signal_Processing_of_Acoustic_Gunshot_Recordings (Last viewed January 26, 2024).
29.
R. D.
Rasband
,
A. T.
Wall
,
K. L.
Gee
,
S. H.
Swift
,
C. M.
Wagner
,
W. J.
Murphy
, and
C. A.
Kardous
, “
Impulse noise measurements of M16 rifles at Marine Base Quantico
,”
Proc. Mtgs. Acoust.
33
,
040003
(
2018
).
30.
ISO 9613-1
, “
Acoustics—Attenuation of sound during propagation outdoors—Part 1: Calculation of the absorption of sound by the atmosphere
” (
International Organization for Standardization
,
Geneva, Switzerland
,
1996
), available at https://www.iso.org/standard/17426.html (Last viewed January 26, 2024).
31.
D. K.
Wilson
, “
Simple, relaxational models for the acoustical properties of porous media
,”
Appl. Acoust.
50
,
171
188
(
1997
).
32.
M. E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbent material
,”
Appl. Acoust.
3
,
105
116
(
1970
).
33.
Z.
Maekawa
, “
Noise reduction by screens
,”
Appl. Acoust.
1
,
157
173
(
1968
).
34.
G. B.
Whitham
, “
The flow pattern of a supersonic projectile
,”
Comm. Pure Appl. Math.
5
,
301
348
(
1952
).
35.
G. B.
Whitham
, “
On the propagation of weak shock waves
,”
J. Fluid Mech.
1
,
290
318
(
1956
).
36.
J.
Varnier
,
M.
Le Pape
, and
F.
Sourgen
, “
On the ballistic wave from projectiles and vehicles of simple geometry
,”
AIAA J.
56
,
2725
2742
(
2018
).
You do not currently have access to this content.