In non-destructive evaluation guided wave inspections, the elastic structure to be inspected is often embedded within other elastic media and the ensuing leaky waves are complex and non-trivial to compute; we consider the canonical example of an elastic waveguide surrounded by other elastic materials that demonstrates the fundamental issues with calculating the leaky waves in such systems. Due to the complex wavenumber solutions required to represent them, leaky waves pose significant challenges to existing numerical methods, with methods that spatially discretise the field to retrieve them suffering from the exponential growth of their amplitude far into the surrounding media. We present a spectral collocation method yielding an accurate and efficient identification of these modes, leaking into elastic half-spaces. We discretise the elastic domains and, depending on the exterior bulk wavespeeds, select appropriate mappings of the discretised domain to complex paths, in which the numerical solution decays and the physics of the problem are preserved. By iterating through all possible radiation cases, the full set of dispersion and attenuation curves are successfully retrieved and validated, where possible, against the commercially available software disperse. As an independent validation, dispersion curves are obtained from finite element simulations of time-dependent waves using Fourier analysis.

1.
Y.
Shen
,
S.
Hirose
, and
Y.
Yamaguchi
, “
Dispersion of ultrasonic surface waves in a steel-epoxy-concrete bonding layered medium based on analytical, experimental, and numerical study
,”
Case Stud. Nondestruct. Test. Evaluation
2
(
1
),
49
63
(
2014
).
2.
A.
Lellouch
,
E.
Biondi
,
B. L.
Biondi
,
B.
Luo
,
G.
Jin
, and
M. A.
Meadows
, “
Properties of a deep seismic waveguide measured with an optical fiber
,”
Phys. Rev. Res
3
(
1
),
013164
(
2021
).
3.
D. E.
Chimenti
and
A. H.
Nayfeh
, “
Leaky Lamb waves in fibrous composite laminates
,”
J. Appl. Phys.
58
(
12
),
4531
4538
(
1985
).
4.
P. B.
Nagy
, “
Leaky guided wave propagation along imperfectly bonded fibers in composite materials
,”
J. Nondestruct. Eval.
13
(
3
),
137
145
(
1994
).
5.
R.
Long
,
M. J. S.
Lowe
, and
P.
Cawley
, “
Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes
,”
Ultrasonics
41
(
7
),
509
519
(
2003
).
6.
R.
Long
,
T.
Vogt
,
M. J. S.
Lowe
, and
P.
Cawley
, “
Measurement of acoustic properties of near-surface soils using an ultrasonic waveguide
,”
Geophysics
69
(
2
),
460
465
(
2004
).
7.
E.
Leinov
,
M. J. S.
Lowe
, and
P.
Cawley
, “
Ultrasonic isolation of buried pipes
,”
J. Sound Vib.
363
,
225
239
(
2016
).
8.
E.
Leinov
,
M. J. S.
Lowe
, and
P.
Cawley
, “
Investigation of guided wave propagation and attenuation in pipe buried in sand
,”
J. Sound Vib.
347
,
96
114
(
2015
).
9.
M.
Castaings
and
M. J. S.
Lowe
, “
Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media
,”
J. Acoust. Soc. Am.
123
(
2
),
696
708
(
2008
).
10.
V. T.
Potsika
,
K. N.
Grivas
,
V. C.
Protopappas
,
M. G.
Vavva
,
K.
Raum
,
D.
Rohrbach
,
D.
Polyzos
, and
D. I.
Fotiadis
, “
Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones
,”
Ultrasonics
54
(
5
),
1219
1230
(
2014
).
11.
A.
Guha
,
M.
Aynardi
,
P.
Shokouhi
, and
C. J.
Lissenden
, “
Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling
,”
Ultrasonics
114
,
106407
(
2021
).
12.
K. I.
Lee
and
S. W.
Yoon
, “
Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia
,”
J. Acoust. Soc. Am.
115
(
6
),
3210
3217
(
2004
).
13.
H.
Lamb
, “
On waves in an elastic plate
,”
Proc. R. Soc. A
81
,
114
128
(
1916
).
14.
D. A.
Kiefer
,
M.
Ponschab
,
S. J.
Rupitsch
, and
M.
Mayle
, “
Calculating the full leaky Lamb wave spectrum with exact fluid interaction
,”
J. Acoust. Soc. Am.
145
(
6
),
3341
3350
(
2019
).
15.
B. N.
Pavlakovic
, “
Leaky guided ultrasonic waves in NDT
,” Ph.D. thesis,
Imperial College London
,
London
(
1998
).
16.
E.
Georgiades
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
Leaky wave characterisation using spectral methods
,”
J. Acoust. Soc. Am.
152
(
3
),
1487
1497
(
2022
).
17.
F.
Treyssède
,
K. L.
Nguyen
,
A. S.
Bonnet-BenDhia
, and
C.
Hazard
, “
Finite element computation of trapped and leaky elastic waves in open stratified waveguides
,”
Wave Motion
51
(
7
),
1093
1107
(
2014
).
18.
S. I.
Rokhlin
,
D. E.
Chimenti
, and
A. H.
Nayfeh
, “
On the topology of the complex wave spectrum in a fluid-coupled elastic layer
,”
J. Acoust. Soc. Am.
85
(
3
),
1074
1080
(
1989
).
19.
T.
Hayashi
and
D.
Inoue
, “
Calculation of leaky Lamb waves with a semi-analytical finite element method
,”
Ultrasonics
54
(
6
),
1460
1469
(
2014
).
20.
M.
Mazzotti
,
I.
Bartoli
, and
A.
Marzani
, “
Ultrasonic leaky guided waves in fluid-coupled generic waveguides: Hybrid finite-boundary element dispersion analysis and experimental validation
,”
J. Appl. Phys.
115
(
14
),
143512
(
2014
).
21.
M.
Mazzotti
,
I.
Bartoli
,
A.
Marzani
, and
E.
Viola
, “
A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section
,”
Ultrasonics
53
(
7
),
1227
1241
(
2013
).
22.
P.
Zuo
,
X.
Yu
, and
Z.
Fan
, “
Numerical modeling of embedded solid waveguides using SAFE-PML approach using a commercially available finite element package
,”
NDT E Int.
90
,
11
23
(
2017
).
23.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
, 2nd ed. (
Dover Publications
,
Mineola, NY
,
2000
), pp.
1
594
.
24.
L. N.
Trefethen
,
Spectral Methods in Matlab
(
SIAM
,
Philadelphia
,
2008
), pp.
1
160
.
25.
S. J.
Ryskamp
and
M. A.
Hoefer
, “
Computation of high frequency magnetoelastic waves in layered materials
,”
Phys. Rev. B
107
(
9
),
094431
(
2023
).
26.
A. T. I.
Adamou
and
R. V.
Craster
, “
Spectral methods for modelling guided waves in elastic media
,”
J. Acoust. Soc. Am.
116
(
3
),
1524
1535
(
2004
).
27.
F. H.
Quintanilla
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
Full 3D dispersion curve solutions for guided waves in generally anisotropic media
,”
J. Sound Vib.
363
,
545
559
(
2016
).
28.
F. H.
Quintanilla
,
Z.
Fan
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
Guided waves' dispersion curves in anisotropic viscoelastic single- and multi-layered media
,”
Proc. R. Soc. A
471
(
2183
),
20150268
(
2015
).
29.
F. H.
Quintanilla
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
Modeling guided elastic waves in generally anisotropic media using a spectral collocation method
,”
J. Acoust. Soc. Am.
137
(
3
),
1180
1194
(
2015
).
30.
F. H.
Quintanilla
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
The symmetry and coupling properties of solutions in general anisotropic multilayer waveguides
,”
J. Acoust. Soc. Am.
141
(
1
),
406
418
(
2017
).
31.
S.
Tang
,
J.
Yin
,
C.
Wang
, and
G.
Zhu
, “
Study on leaky Lamb waves in functionally graded composites loaded by asymmetric fluids
,” Waves Random Complex Media (
2022
).
32.
B.
Pavlakovic
,
M.
Lowe
,
D.
Alleyne
, and
P.
Cawley
, “
Disperse: A general purpose program for creating dispersion curves
,”
Rev. Prog. Quant. Nondestr. Eval.
16
,
185
192
(
1997
).
33.
K. J.
Bathe
,
Finite Element Procedures
, 1st ed. (
Prentice Hall
,
Hoboken, NJ
,
1996
).
34.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
Wiley
,
New York
,
1973
),
Vol. 2
.
35.
A. H.
Nayfeh
and
P. B.
Nagy
, “
Excess attenuation of leaky Lamb waves due to viscous fluid loading
,”
J. Acoust. Soc. Am.
101
,
2649
2658
(
1997
).
36.
J. D.
Achenbach
,
Wave Propagation in Elastic Solids
(
North-Holland
,
Amsterdam
,
1973
), p.
425
.
37.
J. L.
Rose
,
Ultrasonic Guided Waves in Solid Media
(
Cambridge University Press
,
Cambridge
,
2014
), pp.
1
512
.
38.
M.
Gallezot
,
F.
Treyssède
, and
L.
Laguerre
, “
Contribution of leaky modes in the modal analysis of unbounded problems with perfectly matched layers
,”
J. Acoust. Soc. Am.
141
(
1
),
EL16
EL21
(
2017
).
39.
D. A.
Kiefer
, “
Elastodynamic quasi-guided waves for transit-time ultrasonic flow metering
,” Ph.D. thesis,
Universitaet Erlangen-Nuernberg
,
Erlangen
(
2022
).
40.
V. G.
Mozhaev
and
M.
Weihnacht
, “
Subsonic leaky Rayleigh waves at liquid-solid interfaces
,”
Ultrasonics
40
,
927
933
(
2002
).
41.
E. M.
Viggen
and
H. K.
Arnestad
, “
Modelling acoustic radiation from vibrating surfaces around coincidence: Radiation into fluids
,”
J. Sound Vib.
560
,
117787
(
2023
).
42.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University Press
,
Cambridge
,
1996
), pp.
1
231
.
43.
J. A. C.
Weideman
and
S. C.
Reddy
, “
A MATLAB differentiation matrix suite
,”
ACM Trans. Math. Softw.
26
(
4
),
465
519
(
2000
).
44.
D. S.
Mackey
,
N.
Mackey
,
C.
Mehl
, and
V.
Mehrmann
, “
Structured polynomial eigenvalue problems: Good vibrations from good linearizations
,”
SIAM J. Matrix Anal. Appl.
28
(
4
),
1029
1051
(
2006
).
45.
P.
Huthwaite
, “
Accelerated finite element elastodynamic simulations using the GPU
,”
J. Comput. Phys.
257
,
687
707
(
2014
).
46.
G.
Sarris
,
S. G.
Haslinger
,
P.
Huthwaite
,
P. B.
Nagy
, and
M. J. S.
Lowe
, “
Attenuation of Rayleigh waves due to surface roughness
,”
J. Acoust. Soc. Am.
149
(
6
),
4298
4308
(
2021
).
47.
G.
Sarris
,
S. G.
Haslinger
,
P.
Huthwaite
, and
M. J.
Lowe
, “
Ultrasonic methods for the detection of near surface fatigue damage
,”
NDT&E Int.
135
,
102790
(
2023
).
48.
S. G.
Haslinger
,
M. J.
Lowe
,
P.
Huthwaite
,
R. V.
Craster
, and
F.
Shi
, “
Appraising Kirchhoff approximation theory for the scattering of elastic shear waves by randomly rough defects
,”
J. Sound Vib.
460
,
114872
(
2019
).
49.
M.
Huang
,
G.
Sha
,
P.
Huthwaite
,
S. I.
Rokhlin
, and
M. J. S.
Lowe
, “
Maximizing the accuracy of finite element simulation of elastic wave propagation in polycrystals
,”
J. Acoust. Soc. Am.
148
(
4
),
1890
1910
(
2020
).
50.
M. B.
Drozdz
, “
Efficient finite element modelling of ultrasonic waves in elastic media
,” Ph.D. thesis,
Imperial College London
,
London
(
2008
).
51.
P.
Rajagopal
,
M. B.
Drozdz
,
E. A.
Skelton
,
M. J.
Lowe
, and
R. V.
Craster
, “
On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available Finite Element packages
,”
NDT&E Int.
51
,
30
40
(
2012
).
52.
M.
Gallezot
,
F.
Treyssède
, and
L.
Laguerre
, “
A modal approach based on perfectly matched layers for the forced response of elastic open waveguides
,”
J. Comput. Phys.
356
,
391
409
(
2018
).
53.
R.
Sammut
and
A. W.
Snyder
, “
Leaky modes on a dielectric waveguide: Orthogonality and excitation
,”
Appl. Opt.
15
(
4
),
1040
1044
(
1976
).
54.
A. W.
Snyder
and
J.
Love
,
Optical Waveguide Theory
(
Chapman and Hall
,
London
,
1983
).
55.
D.
Alleyne
and
P.
Cawley
, “
A two-dimensional Fourier transform method for the measurement of propagating multimode signals
,”
J. Acoust. Soc. Am.
89
(
3
),
1159
1168
(
1991
).
56.
M. J. S.
Lowe
and
P.
Cawley
, “
The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints
,”
J. Nondestruct. Eval.
13
(
4
),
185
200
(
1994
).
57.
J.-P.
Berenger
, “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
,
185
200
(
1994
).
58.
W. C.
Chew
and
W. H.
Weedon
, “
A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates
,”
Micro. Opt. Tech. Lett.
7
(
13
),
599
604
(
1994
).
59.
W. C.
Chew
and
Q. H.
Liu
, “
Perfectly matched layers for elastodynamics: A new absorbing boundary condition
,”
J. Comput. Acoust.
4
(
4
),
341
359
(
1996
).
60.
U.
Basu
and
A. K.
Chopra
, “
Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: Theory and finite-element implementation
,”
Comput. Methods Appl. Mech. Eng
192
(
11-12
),
1337
1375
(
2003
).
61.
S.
Kim
and
J. E.
Pasciak
, “
The computation of resonances in open systems using a perfectly matched layer
,”
Math. Comp.
78
(
267
),
1375
1398
(
2009
).
62.
F.
Collino
and
C.
Tsogka
, “
Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media
,”
Geophysics
66
(
1
),
294
307
(
2001
).
63.
I.
Harari
and
U.
Albocher
, “
Studies of FE/PML for exterior problems of time-harmonic elastic waves
,”
Comput. Methods Appl. Mech. Eng
195
(
29-32
),
3854
3879
(
2006
).
64.
F.
Pled
and
C.
Desceliers
, “
Review and recent developments on the perfectly matched layer (PML) method for the numerical modeling and simulation of elastic wave propagation in unbounded domains
,”
Arch. Computat. Methods Eng.
29
,
471
518
(
2022
).
65.
E. A.
Skelton
,
S. D.
Adams
, and
R. V.
Craster
, “
Guided elastic waves and perfectly matched layers
,”
Wave Motion
44
(
7-8
),
573
592
(
2007
).
66.
A.
Pelat
,
S.
Felix
, and
V.
Pagneux
, “
A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides
,”
J. Acoust. Soc. Am.
129
(
3
),
1240
1249
(
2011
).
67.
A. S.
Bonnet-Ben Dhia
,
B.
Goursaud
,
C.
Hazard
, and
A.
Prieto
, “
A multimodal method for non-uniform open waveguides
,”
Phys. Procedia
3
,
497
503
(
2010
).
68.
Y. O.
Agha
,
F.
Zolla
,
A.
Nicolet
, and
S.
Guenneau
, “
On the use of PML for the computation of leaky modes: An application to microstructured optical fibres
,”
Int. J. Comput. Math. Electr.
27
(
1
),
95
109
(
2008
).
You do not currently have access to this content.