Wideband sparse spatial spectrum estimation is an important direction-of-arrival (DOA) estimation method that can obtain a high resolution with few snapshots and a low signal-to-noise ratio. However, in an underwater strong interference environment, the accuracy of DOA estimation may be seriously affected, and even the weak targets could be completely masked. In this paper, we propose a fast matrix filter design method based on truncated nuclear norm regularization to attenuate strong interferences while passing weak targets. The matrix filter operator and the exact covariance matrix after filtering can be obtained simultaneously by solving a convex optimization problem that contains the output power term and non-Toeplitz error propagation control term. Then the modified sparse spectrum fitting algorithm based on the matrix filter is used to estimate spatial spectrum over closely spaced wideband signals. Compared with existing methods, the proposed method achieves higher DOA estimation accuracy and lower computational time for matrix filter design. Meanwhile, the estimation accuracy of the proposed method is verified with the experimental results.

1.
J.-J.
Fuchs
, “
On the application of the global matched filter to DOA estimation with uniform circular arrays
,”
IEEE Trans. Signal Process.
49
(
4
),
702
709
(
2001
).
2.
Z.-Q.
He
,
Z.-P.
Shi
,
L.
Huang
, and
H. C.
So
, “
Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting
,”
IEEE Signal Process. Lett.
22
(
4
),
435
439
(
2015
).
3.
D.
Malioutov
,
M.
Cetin
, and
A.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
(
8
),
3010
3022
(
2005
).
4.
J.
Zheng
and
M.
Kaveh
, “
Sparse spatial spectral estimation: A covariance fitting algorithm, performance and regularization
,”
IEEE Trans. Signal Process.
61
(
11
),
2767
2777
(
2013
).
5.
Y.
Park
and
P.
Gerstoft
, “
Gridless sparse covariance-based beamforming via alternating projections including co-prime arrays
,”
J. Acoust. Soc. Am.
151
(
6
),
3828
3837
(
2022
).
6.
J.
Capon
, “
High-resolution frequency-wavenumber spectrum analysis
,”
Proc. IEEE
57
(
8
),
1408
1418
(
1969
).
7.
R.
Schmidt
, “
Multiple emitter location and signal parameter estimation
,”
IEEE Trans. Antennas Propagat.
34
(
3
),
276
280
(
1986
).
8.
J.
Hui
,
M.
Song
, and
J.
Li
, “
Passive detection parameter measurement of azimuth and frequency based on single vector sensor
,”
J. Acoust. Soc. Am.
144
(
3
),
1807
(
2018
).
9.
D.
Wenshu
,
Z.
Enming
, and
B.
Kaikai
, “
A method of line spectrum extraction based on target radiated spectrum feature and its post-processing
,”
J. Syst. Eng. Electron.
32
(
6
),
1381
1393
(
2021
).
10.
M. J. G.
Parsons
,
A. J.
Duncan
,
S. K.
Parsons
, and
C.
Erbe
, “
Reducing vessel noise: An example of a solar-electric passenger ferry
,”
J. Acoust. Soc. Am.
147
(
5
),
3575
3583
(
2020
).
11.
R. J.
Vaccaro
and
B. F.
Harrison
, “
Matrix filters for passive sonar
,” in
Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing
, Salt Lake City, UT (May 7–11,
2001
) (
IEEE
,
New York
, 2021), Vol.
5
, pp.
2921
2924
.
12.
R. J.
Vaccaro
,
A.
Chhetri
, and
B. F.
Harrison
, “
Matrix filter design for passive sonar interference suppression
,”
J. Acoust. Soc. Am.
115
(
6
),
3010
3020
(
2004
).
13.
R.
Vaccaro
and
B.
Harrison
, “
Optimal matrix-filter design
,”
IEEE Trans. Signal Process.
44
(
3
),
705
709
(
1996
).
14.
A.
Hassanien
,
S.
Elkader
,
A.
Gershman
, and
K.
Wong
, “
Convex optimization based beam-space preprocessing with improved robustness against out-of-sector sources
,”
IEEE Trans. Signal Process.
54
(
5
),
1587
1595
(
2006
).
15.
Y.
Yang
,
Y.
Zhang
, and
L.
Yang
, “
Wideband sparse spatial spectrum estimation using matrix filter with nulling in a strong interference environment
,”
J. Acoust. Soc. Am.
143
(
6
),
3891
3898
(
2018
).
16.
Y.
Hu
,
D.
Zhang
,
J.
Ye
,
X.
Li
, and
X.
He
, “
Fast and accurate matrix completion via truncated nuclear norm regularization
,”
IEEE Trans. Pattern Anal. Mach. Intell.
35
(
9
),
2117
2130
(
2013
).
17.
T.
Saeedi
and
M.
Rezghi
, “
A novel enriched version of truncated nuclear norm regularization for matrix completion of inexact observed data
,”
IEEE Trans. Knowl. Data Eng.
34
(
2
),
519
530
(
2022
).
18.
S.
Gu
,
Q.
Xie
,
D.
Meng
,
W.
Zuo
,
X.
Feng
, and
L.
Zhang
, “
Weighted nuclear norm minimization and its applications to low level vision
,”
Int. J. Comput. Vis.
121
(
2
),
183
208
(
2017
).
19.
A.
Beck
and
M.
Teboulle
, “
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
,”
SIAM J. Imaging Sci.
2
(
1
),
183
202
(
2009
).
20.
K.-Y.
Wang
,
A. M.-C.
So
,
T.-H.
Chang
,
W.-K.
Ma
, and
C.-Y.
Chi
, “
Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization
,”
IEEE Trans. Signal Process.
62
(
21
),
5690
5705
(
2014
).
21.
L.
Yang
,
Y.
Yang
, and
J.
Zhu
, “
Source localization based on sparse spectral fitting and spatial filtering
,” in
Proceedings of OCEANS 2016 MTS/IEEE
, Monterey, CA (September 19–23,
2016
) (
IEEE
,
New York
, 2016).
22.
H.
Cox
,
R.
Zeskind
, and
M.
Owen
, “
Robust adaptive beamforming
,”
IEEE Trans. Acoust. Speech Signal Process.
35
(
10
),
1365
1376
(
1987
).
23.
X.
Liu
,
J.
Fan
,
C.
Sun
,
Y.
Yang
, and
J.
Zhuo
, “
High-resolution and low-sidelobe forward-look sonar imaging using deconvolution
,”
Appl. Acoust.
178
,
107986
(
2021
).
You do not currently have access to this content.