Recent studies on diffusion adaptation for distributed active noise control (DANC) systems have attracted significant research interest due to their balance between computational burden and stability compared to conventional centralized and decentralized adaptation schemes. The conventional multitask diffusion FxLMS algorithm assumes that the converged solutions of all control filters are consistent to each other, which is unrealistic in practice hence results in inferior performance in noise reduction. An augmented diffusion FxLMS algorithm has been proposed to overcome this problem, which adopts a neighborhood-wide adaptation and node-based combination approach to mitigate the bias in the converged solution of the multitask diffusion algorithms. However, the improvement comes at the expense of a higher computational burden and communication cost. All existing DANC systems, including the multitask and augmented diffusion algorithms, assume one-way communication between nodes. By contrast, this paper proposes a bidirectional communication scheme for the augmented diffusion algorithm to further reduce the memory requirement, computational burden, and communication cost. Simulation results in the free field and with measured room impulse responses both demonstrate that the proposed augmented diffusion algorithm with bidirectional communication can achieve a faster convergence speed than that based on one-way communication with a lower memory, computation, and communication burden.

1.
Albu
,
F.
(
2018
). “
The constrained stability least mean square algorithm for active noise control
,” in
Proceedings of the 2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)
, pp.
1
5
.
2.
An
,
F.
,
Cao
,
Y.
, and
Liu
,
B.
(
2021
). “
Optimized decentralized filtered-x least mean square algorithm for over-determined systems with periodic disturbances
,”
J. Sound Vib.
491
,
115763
.
3.
Antoñanzas
,
C.
,
Ferrer
,
M.
,
Gonzalez
,
A.
,
Diego
,
M. D.
, and
Piñero
,
G.
(
2015
). “
Diffusion algorithm for active noise control in distributed networks
,” in
Proceedings of the 22nd International Conference on Sound and Vibration
, pp.
776
783
.
4.
Bjarnason
,
E.
(
1992
). “
Active noise cancellation using a modified form of the filtered-x LMS algorithm
,” in
Proceedings of the 6th European Signal Processing Conference
, pp.
1053
1056
.
5.
Blondel
,
V. D.
,
Hendrickx
,
J. M.
,
Olshevsky
,
A.
, and
Tsitsiklis
,
J. N.
(
2005
). “
Convergence in multiagent coordination, consensus, and flocking
,” in
Proceedings of the 44th IEEE Conference on Decision Control
, pp.
2996
3000
.
6.
Cattivelli
,
F. S.
, and
Sayed
,
A. H.
(
2010
). “
Diffusion LMS strategies for distributed estimation
,”
IEEE Trans. Signal Process.
58
(
3
),
1035
1048
.
7.
Chen
,
J.
,
Richard
,
C.
, and
Sayed
,
A. H.
(
2014
). “
Multitask diffusion adaptation over networks
,”
IEEE Trans. Signal Process.
62
(
16
),
4129
4144
.
8.
Chen
,
J.
,
Richard
,
C.
, and
Sayed
,
A. H.
(
2015
). “
Diffusion LMS over multitask networks
,”
IEEE Trans. Signal Process.
63
(
11
),
2733
2748
.
9.
Chen
,
J.
, and
Sayed
,
A. H.
(
2012
). “
Diffusion adaptation strategies for distributed optimization and learning over networks
,”
IEEE Trans. Signal Process.
60
(
8
),
4289
4305
.
10.
Chu
,
Y.
,
Chan
,
S. C.
,
Mak
,
C. M.
, and
Wu
,
M.
(
2021a
). “
A diffusion FXLMS algorithm for multi-channel active noise control and variable spatial smoothing
,” in
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp.
4695
4699
.
11.
Chu
,
Y.
,
Mak
,
C.
,
Cai
,
C.
, and
Wu
,
M.
(
2021b
). “
A new variable spatial regularized FxLMS algorithm for diffusion active noise control
,”
J. Nanjing Univ (Natural Sci.)
57
,
683
689
.
12.
Chu
,
Y.
,
Mak
,
C.
,
Zhao
,
Y.
,
Chan
,
S.
, and
Wu
,
M.
(
2020
). “
Performance analysis of a diffusion control method for ANC systems and the network design
,”
J. Sound Vib.
475
,
115273
.
13.
Chu
,
Y.
,
Wu
,
M.
,
Sun
,
H.
,
Yang
,
J.
, and
Chen
,
M.
(
2022
). “
Some practical acoustic design and typical control strategies for multichannel active noise control
,”
Appl. Sci. Basel.
12
(
4
),
2244
.
14.
Dong
,
Y.
,
Chen
,
J.
, and
Zhang
,
W.
(
2020
). “
Distributed wave-domain active noise control based on the diffusion adaptation
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
28
,
2374
2385
.
15.
Dong
,
Y.
,
Chen
,
J.
, and
Zhang
,
W.
(
2021
). “
Wave-domain active noise control over distributed networks of multi-channel nodes
,”
Signal Process.
184
,
108050
.
16.
Elliott
,
S.
(
2001
).
Signal Processing for Active Control
(
Academic
,
London, UK
), pp.
103
270
.
17.
Elliott
,
S.
,
Stothers
,
I.
, and
Nelson
,
P.
(
1987
). “
A multiple error LMS algorithm and its application to the active control of sound and vibration
,”
IEEE Trans. Acoust. Speech Signal Process.
35
(
10
),
1423
1434
.
18.
Elliott
,
S. J.
, and
Boucher
,
C. C.
(
1994
). “
Interaction between multiple feedforward active control systems
,”
IEEE Trans. Speech Audio Process.
2
(
4
),
521
530
.
19.
Farhang-Boroujeny
,
B.
(
2013
).
Adaptive Filters: Theory and Applications
(
Wiley
,
Hoboken, NJ
), pp.
551
583
.
20.
Ferrer
,
M.
,
de Diego
,
M.
,
Piñero
,
G.
, and
Gonzalez
,
A.
(
2015
). “
Active noise control over adaptive distributed networks
,”
Signal Process.
107
,
82
95
.
21.
Ferrer
,
M.
,
de Diego
,
M.
,
Piñero
,
G.
, and
Gonzalez
,
A.
(
2021
). “
Affine projection algorithm over acoustic sensor networks for active noise control
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
29
,
448
461
.
22.
Ferrer
,
M.
,
Gonzalez
,
A.
,
de Diego
,
M.
, and
Pinero
,
G.
(
2017
). “
Distributed affine projection algorithm over acoustically coupled sensor networks
,”
IEEE Trans. Signal Process.
65
(
24
),
6423
6434
.
23.
Gauthier
,
P.-A.
, and
Berry
,
A.
(
2006
). “
Adaptive wave field synthesis with independent radiation mode control for active sound field reproduction: Theory
,”
J. Acoust. Soc. Am.
119
(
5
),
2721
2737
.
24.
Haykin
,
S.
(
2014
).
Adaptive Filter Theory
, 5th ed. (
Pearson Education
,
London, UK
), pp.
551
583
.
25.
Ho
,
C.-Y.
,
Liu
,
L.
,
Shyu
,
K.-K.
,
Kuo
,
S. M.
, and
Chang
,
C.-Y.
(
2021
). “
Time-division multiple reference approach for multiple-channel active noise control system
,”
J. Sound Vib.
495
,
115922
.
26.
Li
,
T.
(
2023
). “
ADFxLMS-BC-algorithm
,” https://github.com/TianyouLi2023/ADFxLMS-BC-algorithm (Last viewed November 23, 2023).
27.
Li
,
T.
,
Lian
,
S.
,
Zhao
,
S.
,
Lu
,
J.
, and
Burnett
,
I. S.
(
2023
). “
Distributed active noise control based on an augmented diffusion FxLMS algorithm
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
31
,
1449
1463
.
28.
Lopes
,
C. G.
, and
Sayed
,
A. H.
(
2007
). “
Incremental adaptive strategies over distributed networks
,”
IEEE Trans. Signal Process.
55
(
8
),
4064
4077
.
29.
Lopes
,
C. G.
, and
Sayed
,
A. H.
(
2008
). “
Diffusion least-mean squares over adaptive networks: Formulation and performance analysis
,”
IEEE Trans. Signal Process.
56
(
7
),
3122
3136
.
30.
Plata-Chaves
,
J.
,
Bertrand
,
A.
, and
Moonen
,
M.
(
2016
). “
Incremental multiple error filtered-X LMS for node-specific active noise control over wireless acoustic sensor networks
,” in
Proceedings IEEE Sensor Array Multichannel Signal Process. Workshop (SAM)
, pp.
1
5
.
31.
Plata-Chaves
,
J.
,
Bertrand
,
A.
,
Moonen
,
M.
,
Theodoridis
,
S.
, and
Zoubir
,
A. M.
(
2017
). “
Heterogeneous and multitask wireless sensor networks—Algorithms, applications, and challenges
,”
IEEE J. Sel. Top. Signal Process.
11
(
3
),
450
465
.
32.
Pradhan
,
S.
,
Zhang
,
G.
,
Zhao
,
S.
,
Niwa
,
K.
, and
Kleijn
,
W. B.
(
2023
). “
On eigenvalue shaping for two-channel decentralized active noise control systems
,”
Appl. Acoust.
205
,
109260
.
33.
Scherber
,
D. S.
, and
Papadopoulos
,
H. C.
(
2004
). “
Locally constructed algorithms for distributed computations in ad-hoc networks
,” in
Proceedings of Information Processing Sensor Networks (IPSN)
, pp.
11
19
.
34.
Song
,
J.-M.
, and
Park
,
P.
(
2016
). “
A diffusion strategy for the multichannel active noise control system in distributed network
,” in
Proceedings of the International Conference on Computational Science and Computational Intelligence
, pp.
659
664
.
35.
Song
,
P.
,
Zhao
,
H.
,
Li
,
P.
, and
Shi
,
L.
(
2021
). “
Diffusion affine projection maximum correntropy criterion algorithm and its performance analysis
,”
Signal Process.
181
,
107918
.
36.
Tobias
,
O. J.
,
Bermudez
,
J. C. M.
, and
Bershad
,
N. J.
(
2000
). “
Mean weight behavior of the filtered-X LMS algorithm
,”
IEEE Trans. Signal Process.
48
(
4
),
1061
1075
.
37.
Wei
,
Y.
,
Gelfand
,
S. B.
, and
Krogmeier
,
J. V.
(
2001
). “
Noise-constrained least mean squares algorithm
,”
IEEE Trans. Signal Process
49
(
9
),
1961
1970
.
38.
Xiao
,
L.
, and
Boyd
,
S.
(
2004
). “
Fast linear iterations for distributed averaging
,”
Syst. Control Lett.
53
(
1
),
65
78
.
39.
Zhang
,
G.
,
Tao
,
J.
,
Qiu
,
X.
, and
Burnett
,
I.
(
2019
). “
Decentralized two-channel active noise control for single frequency by shaping matrix eigenvalues
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
27
(
1
),
44
52
.
40.
Zou
,
H.
,
Qiu
,
X.
,
Lu
,
J.
, and
Niu
,
F.
(
2007
). “
A preliminary experimental study on virtual sound barrier system
,”
J. Sound Vib.
307
(
1-2
),
379
385
.
You do not currently have access to this content.