In transport engineering applications, flow-induced vibrations is an interesting topic to address since it may negatively affect the operation and the response of the system. Wind tunnel facilities are mandatory to test the structure design efficiency or to analyse new material performances under aerodynamic load. However, these experimental tests can be expensive and take a long time to set up and operate; hence, alternative methods for the reproduction of the structural response to a turbulent boundary layer excitation are required to accelerate and improve the experimental setups and provide more data for uncertainty analysis. In this paper, an alternative approach, the eXperimental Pseudo-Equivalent Deterministic Excitation method (X-PEDEM), is here extended for applications in the low frequency domain. An investigation about the applicability of the method in the low frequency domain is conducted, together with an analysis of its main properties. The reliability of the method is then tested numerically by considering different conditions: two different panels, two different boundary conditions, and different asymptotic flow velocities are considered.

1.
Aucejo
,
M.
,
Maxit
,
L.
, and
Guyader
,
J.-L.
(
2012
). “
Experimental simulation of turbulent boundary layer induced vibrations by using a synthetic array
,”
J. Sound Vib.
331
(
16
),
3824
3843
.
2.
Berry
,
A.
,
Dia
,
R.
, and
Robin
,
O.
(
2012
). “
A wave field synthesis approach to reproduction of spatially correlated sound fields
,”
J. Acoust. Soc. Am.
131
(
2
),
1226
1239
.
3.
Bull
,
M.
(
1996
). “
Wall-pressure fluctuations beneath turbulent boundary layers: Some reflections on forty years of research
,”
J. Sound Vib.
190
(
3
),
299
315
.
4.
Chase
,
D. M.
(
1980
). “
Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure
,”
J. Sound Vib.
70
(
1
),
29
67
.
5.
Corcos
,
G.
(
1963
). “
Resolution of pressure in turbulence
,”
J. Acoust. Soc. Am.
35
(
2
),
192
199
.
6.
De Rosa
,
S.
, and
Franco
,
F.
(
2008
). “
Exact and numerical responses of a plate under a turbulent boundary layer excitation
,”
J. Fluids Struct.
24
(
2
),
212
230
.
7.
De Rosa
,
S.
,
Franco
,
F.
, and
Ciappi
,
E.
(
2015
). “
A simplified method for the analysis of the stochastic response in discrete coordinates
,”
J. Sound Vib.
339
,
359
375
.
8.
Fahy
,
F.
(
1966
). “
On simulating the transmission through structures of noise from turbulent boundary layer pressure fluctuations
,”
J. Sound Vib.
3
(
1
),
57
81
.
9.
Franco
,
F.
,
De Rosa
,
S.
, and
Ciappi
,
E.
(
2013
). “
Numerical approximations on the predictive responses of plates under stochastic and convective loads
,”
J. Fluids Struct.
42
,
296
312
.
10.
Goody
,
M.
(
2004
). “
Empirical spectral model of surface pressure fluctuations
,”
AIAA J.
42
(
9
),
1788
1794
.
11.
Hambric
,
S.
, and
Lysak
,
P.
(
2019
). “
Validation of a simple empirical model for calculating the vibration of flat plates excited by incompressible homogeneous turbulent boundary layer flow
,” in
International Conference on Flow Induced Noise and Vibration Issues and Aspects
(
Springer
,
Berlin
), pp.
61
85
.
12.
Ichchou
,
M. N.
,
Bareille
,
O.
,
Troclet
,
B.
,
Hiverniau
,
B.
,
De Rochambeau
,
M.
, and
Chronopoulos
,
D.
(
2015
). “
Vibroacoustics under aerodynamic excitations
,” in
International Conference on Flow Induced Noise and Vibration Issues and Aspects
(
Springer
,
Berlin
), pp.
227
247
.
13.
Karimi
,
M.
,
Croaker
,
P.
,
Maxit
,
L.
,
Robin
,
O.
,
Skvortsov
,
A.
,
Marburg
,
S.
, and
Kessissoglou
,
N.
(
2020
). “
A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer
,”
J. Fluids Struct.
92
,
102814
.
14.
Karimi
,
M.
,
Croaker
,
P.
,
Skvortsov
,
A.
,
Maxit
,
L.
, and
Kirby
,
R.
(
2021
). “
Simulation of airfoil surface pressure due to incident turbulence using realizations of uncorrelated wall plane waves
,”
J. Acoust. Soc. Am.
149
(
2
),
1085
1096
.
15.
Marchetto
,
C.
,
Maxit
,
L.
,
Robin
,
O.
, and
Berry
,
A.
(
2017
). “
Vibroacoustic response of panels under diffuse acoustic field excitation from sensitivity functions and reciprocity principles
,”
J. Acoust. Soc. Am.
141
(
6
),
4508
4521
.
16.
Marchetto
,
C.
,
Maxit
,
L.
,
Robin
,
O.
, and
Berry
,
A.
(
2018
). “
Experimental prediction of the vibration response of panels under a turbulent boundary layer excitation from sensitivity functions
,”
J. Acoust. Soc. Am.
143
(
5
),
2954
2964
.
17.
Maury
,
C.
,
Elliott
,
S. J.
, and
Gardonio
,
P.
(
2004
). “
Turbulent boundary-layer simulation with an array of loudspeakers
,”
AIAA J.
42
(
4
),
706
713
.
18.
Mazzeo
,
G.
,
Ichchou
,
M.
,
Petrone
,
G.
,
Bareille
,
O.
,
De Rosa
,
S.
, and
Franco
,
F.
(
2022
). “
Pseudo-equivalent deterministic excitation method application for experimental reproduction of a structural response to a turbulent boundary layer excitation
,”
J. Acoust. Soc. Am.
152
(
3
),
1498
1514
.
19.
Mellen
,
R. H.
(
1990
). “
On modeling convective turbulence
,”
J. Acoust. Soc. Am.
88
(
6
),
2891
2893
.
20.
Robin
,
O.
,
Berry
,
A.
, and
Moreau
,
S.
(
2013
). “
Reproduction of random pressure fields based on planar nearfield acoustic holography
,”
J. Acoust. Soc. Am.
133
(
6
),
3885
3899
.
21.
Robin
,
O.
,
Berry
,
A.
, and
Moreau
,
S.
(
2014
). “
Experimental vibroacoustic testing of plane panels using synthesized random pressure fields
,”
J. Acoust. Soc. Am.
135
(
6
),
3434
3445
.
22.
Robin
,
O.
,
Berry
,
A.
, and
Moreau
,
S.
(
2015
). “
Experimental synthesis of spatially-correlated pressure fields for the vibroacoustic testing of panels
,” in
International Conference on Flow Induced Noise and Vibration Issues and Aspects
(
Springer
,
Berlin
), pp.
151
185
.
23.
Wilson
,
E. L.
,
Der Kiureghian
,
A.
, and
Bayo
,
E.
(
1981
). “
A replacement for the srss method in seismic analysis
,”
Earthquake Engng. Struct. Dyn.
9
(
2
),
187
192
.
You do not currently have access to this content.