According to nonlinear source-filter theory, as the strength of the coupling between the source and filter increases, typically by a decrease in the vocal tract cross-sectional area, the resultant increase in the inertance of the vocal tract yields an increase in the interactions between acoustic pressures within the vocal tract and the changing glottal airflow and/or the vibratory pattern of the vocal folds as noted in Titze [(2008). J. Acoust. Soc. Am. 123(4), 1902–1915]. The purpose of the current research was to examine the effects of parametric vocal tract constrictions mimicking epilaryngeal tube and lip narrowing on aerodynamic measures in a dynamic self-oscillating physical model of the vocal folds and vocal tract. Multilayered silicone vocal fold models were created based on Murray and Thomson [(2011). J. Visualized Exp. 58, e3498] and Murray and Thomson [(2012). J. Acoust. Soc. Am. 132(5), 3428–3438] and mounted to a simple synthetic trachea and supraglottal vocal tract model. Four constriction cross-sectional areas were examined at two locations (i.e., at the epilarynx and lip regions). Phonation threshold pressure and flow were measured at phonation onset and offset using four M5-CONV vocal fold models. Results indicated that both constriction magnitude and location are relevant factors in determining glottal aerodynamics. In general, a narrow epilarynx tube or lip constriction resulted in the lowest onset pressures and airflows while the no vocal tract condition resulted in the highest onset pressures and airflows.

1.
Agarwal
,
M.
,
Scherer
,
R.
, and
De Witt
,
K.
(
2004
). “
Effects of false vocal fold width on translaryngeal flow resistance
,” in
Proceedings of the International Conference on Voice Physiology and Biomechanics: Modeling Complexity
,
Marseille, France
, August 18–20.
2.
Andrade
,
P. A.
,
Wistbacka
,
G.
,
Larsson
,
H.
,
Södersten
,
M.
,
Hammarberg
,
B.
,
Simberg
,
S.
,
Švec
,
J. G.
, and
Granqvist
,
S.
(
2016
). “
The flow and pressure relationships in different tubes commonly used for semi-occluded vocal tract exercises
,”
J. Voice
30
(
1
),
36
41
.
3.
Baer
,
T.
(
1975
). “
Investigation of phonation using excised larynxes
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Bailly
,
L.
,
Pelorson
,
X.
,
Henrich
,
N.
, and
Ruty
,
N.
(
2008
). “
Influence of a constriction in the near field of the vocal folds: Physical modeling and experimental validation
,”
J. Acoust. Soc. Am.
124
(
5
),
3296
3308
.
5.
Chan
,
R. W.
, and
Titze
,
I. R.
(
2006
). “
Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics
,”
J. Acoust. Soc. Am.
119
(
4
),
2351
2362
.
6.
Chan
,
R. W.
,
Titze
,
I. R.
, and
Titze
,
M. R.
(
1996
). “
Glottal geometry and phonation threshold pressure in a vocal fold physical model
,”
J. Acoust. Soc. Am.
99
(
4
),
2471
2500
.
7.
Dargin
,
T. C.
,
DeLaunay
,
A.
, and
Searl
,
J.
(
2016
). “
Semioccluded vocal tract exercises: changes in laryngeal and pharyngeal activity during stroboscopy
,”
J. Voice
30
(
3
),
377.e1
.
8.
da Silva
,
A. R.
,
Ghirardi
,
A. C.
,
Reiser
,
M. R.
, and
Paul
,
S.
(
2019
). “
An exact analytical model for the relationship between flow resistance and geometric properties of tubes used in semi-occluded vocal tract exercises
,”
J. Voice
33
(
5
),
585
590
.
9.
Döllinger
,
M.
,
Berry
,
D. A.
,
Luegmair
,
G.
,
Hüttner
,
B.
, and
Bohr
,
C.
(
2012
). “
Effects of the epilarynx area on vocal fold dynamics and the primary voice signal
,”
J. Voice
26
(
3
),
285
292
.
10.
Döllinger
,
M.
,
Berry
,
D. A.
, and
Montequin
,
D. W.
(
2006
). “
The influence of epilarynx area on vocal fold dynamics
,”
Otolaryngol. Head Neck Surg.
135
(
5
),
724
729
.
11.
Fant
,
G.
(
1960
).
Acoustic Theory of Speech Production
(
Mouton and Co.
,
The Hague
).
12.
Fulcher
,
L.
, and
Scherer
,
R.
(
2015
). “
Hysteresis in an extension of Titze's surface wave model and contact with phonation onset/offset experiments
,”
J. Acoust. Soc. Am.
137
(
4
),
2266
.
13.
Gauffin
,
J.
, and
Sundberg
,
J.
(
1989
). “
Spectral correlates of glottal voice source waveform characteristics
,”
J. Speech. Lang. Hear. Res.
32
(
3
),
556
565
.
14.
Gobl
,
C.
, and
Karlsson
,
I.
(
1991
). “
Male and female voice source dynamics
,” in
Vocal Fold Physiology: Acoustic, Perceptual, and Physiological Aspects of Voice Mechanisms
, edited by
J.
Gauffin
and
B.
Hammarberg
(
Singular Publishing Group
,
San Diego, CA
), pp.
121
128
.
15.
Hoffman
,
M. R.
,
Rieves
,
A. L.
,
Budde
,
A. J.
,
Surender
,
K.
,
Zhang
,
Y.
, and
Jiang
,
J. J.
(
2012
). “
Phonation instability flow in excised canine larynges
,”
J. Voice
26
(
3
),
280
284
.
16.
Horáček
,
J.
,
Radolf
,
V.
,
Bula
,
V.
, and
Laukkanen
,
A. M.
(
2014
). “
Air-pressure, vocal folds vibration and acoustic characteristics of phonation during vocal exercising. Part 2: Measurement on a physical model
,”
Eng. Mech.
21
(
3
),
193
200
.
17.
Horáček
,
J.
,
Radolf
,
V.
, and
Laukkanen
,
A. M.
(
2019a
). “
Experimental and computational modeling of the effects of voice therapy using tubes
,”
J. Speech. Lang. Hear. Res.
62
(
7
),
2227
2244
.
18.
Horáček
,
J.
,
Radolf
,
V.
, and
Laukkanen
,
A. M.
(
2019b
). “
Impact stress in water resistance voice therapy: A physical modeling study
,”
J. Voice
33
(
4
),
490
496
.
19.
Ishizaka
,
K.
, and
Matsudaira
,
M.
(
1972
).
Fluid Mechanical Considerations of Vocal Cord Vibration
(
Speech Communication Research Laboratory
,
Santa Barbara, CA
).
20.
Jiang
,
J. J.
,
Regner
,
M. F.
,
Tao
,
C.
, and
Pauls
,
S.
(
2008
). “
Phonation threshold flow in elongated excised larynges
,”
Ann. Otol. Rhinol. Laryngol.
117
(
7
),
548
553
.
21.
Jiang
,
J. J.
, and
Tao
,
C.
(
2007
). “
The minimum glottal airflow to initiate vocal fold oscillation
,”
J. Acoust. Soc. Am.
121
(
5
),
2873
2881
.
22.
Kang
,
J.
,
Scholp
,
A.
,
Tangney
,
J.
, and
Jiang
,
J. J.
(
2019
). “
Effects of a simulated system of straw phonation on the complete phonatory range of excised canine larynges
,”
Eur. Arch. Otorhinolaryngol.
276
(
2
),
473
482
.
23.
Kapsner-Smith
,
M. R.
,
Hunter
,
E. J.
,
Kirkham
,
K.
,
Cox
,
K.
, and
Titze
,
I. R.
(
2015
). “
A randomized controlled trial of two semi-occluded vocal tract voice therapy protocols
,”
J. Speech. Lang. Hear. Res.
58
(
3
),
535
549
.
24.
Li
,
N. Y.
,
Verdolini
,
K.
,
Clermont
,
G.
,
Mi
,
Q.
,
Rubinstein
,
E. N.
,
Hebda
,
P. A.
, and
Vodovotz
,
Y.
(
2008
). “
A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury
,”
PLos One
3
(
7
),
e2789
.
25.
Lucero
,
J. C.
(
1995
). “
The minimum lung pressure to sustain vocal fold oscillation
,”
J. Acoust. Soc. Am.
98
(
2
),
779
784
.
26.
Lucero
,
J. C.
(
1999
). “
A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset–offset
,”
J. Acoust. Soc. Am.
105
(
1
),
423
431
.
27.
Lucero
,
J. C.
,
Lourenço
,
K. G.
,
Hermant
,
N.
,
Van Hirtum
,
A.
, and
Pelorson
,
X.
(
2012
). “
Effect of source–tract acoustical coupling on the oscillation onset of the vocal folds
,”
J. Acoust. Soc. Am.
132
(
1
),
403
411
.
28.
Matsumoto
,
T.
,
Kanaya
,
M.
,
Ishimura
,
K.
, and
Tokuda
,
I. T.
(
2021
). “
Experimental study of vocal–ventricular fold oscillations in voice production
,”
J. Acoust. Soc. Am.
149
(
1
),
271
284
.
29.
Mau
,
T.
,
Muhlestein
,
J.
,
Callahan
,
S.
,
Weinheimer
,
K. T.
, and
Chan
,
R. W.
(
2011
). “
Phonation threshold pressure and flow in excised human larynges
,”
Laryngoscope
121
(
8
),
1743
1751
.
30.
Maxfield
,
L.
,
Palaparthi
,
A.
, and
Titze
,
I.
(
2017
). “
New evidence that nonlinear source-filter coupling affects harmonic intensity and f0 stability during instances of harmonics crossing formants
,”
J. Voice
31
(
2
),
149
156
.
31.
Maxfield
,
L.
,
Titze
,
I.
,
Hunter
,
E.
, and
Kapsner-Smith
,
M.
(
2015
). “
Intraoral pressures produced by thirteen semi-occluded vocal tract gestures
,”
Logoped. Phoniatr. Vocol.
40
(
2
),
86
92
.
32.
May
,
N.
(
2022
). “
The effect of nonlinear source-filter interaction on aerodynamic measures in a synthetic model of the vocal folds and vocal tract
,” Ph.D. thesis,
Bowling Green State University
,
Bowling Green, OH
.
33.
Migimatsu
,
K.
, and
Tokuda
,
I. T.
(
2019
). “
Experimental study on nonlinear source–filter interaction using synthetic vocal fold models
,”
J. Acoust. Soc. Am.
146
(
2
),
983
997
.
34.
Miller
,
D. G.
, and
Schutte
,
H. K.
(
1991
). “
Effects of downstream occlusions on pressures near the glottis in singing
,” in
Vocal Fold Physiology: Acoustic, Perceptual, and Physiological Aspects of Voice Mechanisms, Proceedings of the Vocal Fold Physiology Conference,
Stockholm, Sweden
,
July 30–August 3, 1989
, edited by J. Gauffin and B. Hammarberg, pp.
91
98
.
35.
Montequin
,
D. W.
(
2003
). “
Developing a methodology to study the effect of the epilarynx tube on phonation threshold pressure and driving pressure
,” Ph.D. thesis,
University of Iowa
,
Iowa City, Iowa
.
36.
Murray
,
P. R.
(
2011
). “
Flow-induced responses of normal, bowed, and augmented synthetic vocal fold models
,” Ph.D. thesis,
Brigham Young University
,
Provo, UT
.
37.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2011
). “
Synthetic, multi-layer, self-oscillating vocal fold model fabrication
,”
J. Visualized Exp.
58
,
e3498
.
38.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2012
). “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
(
5
),
3428
3438
.
39.
Nix
,
J. P.
, and
Simpson
,
C. B.
(
2007
). “
Semi‐occluded vocal tract postures and their application in the singing voice studio
,”
J. Acoust. Soc. Am.
121
(
5
),
3087
.
40.
Perrine
,
B. L.
,
Scherer
,
R. C.
,
Fulcher
,
L. P.
, and
Zhai
,
G.
(
2020
). “
Phonation threshold pressure using a 3-mass model of phonation with empirical pressure values
,”
J. Acoust. Soc. Am.
147
(
3
),
1727
1737
.
41.
Pickup
,
B. A.
, and
Thomson
,
S. L.
(
2010
). “
Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models
,”
J. Acoust. Soc. Am.
128
(
3
),
EL124
EL129
.
42.
Plant
,
R. L.
,
Freed
,
G. L.
, and
Plant
,
R. E.
(
2004
). “
Direct measurement of onset and offset phonation threshold pressure in normal subjects
,”
J. Acoust. Soc. Am.
116
(
6
),
3640
3646
.
43.
Regner
,
M. F.
,
Tao
,
C.
,
Zhuang
,
P.
, and
Jiang
,
J. J.
(
2008
). “
Onset and offset phonation threshold flow in excised canine larynges
,”
Laryngoscope
118
(
7
),
1313
1317
.
44.
Rothenberg
,
M.
(
1981
). “
Acoustic interaction between the glottal source and the vocal tract
,” in
Proceedings of the Vocal Fold Physiology Conference
, Kurume, Japan, January 15–19,
1980
, edited by K. N. Stevens and M. Hirano (
University of Tokyo Press
,
Tokyo
), pp.
305
328
.
45.
Rothenberg
,
M.
(
1983
). “
Source-tract acoustic interaction and voice quality
,” in
Transcripts of the Twelfth Symposium: Care of the Professional Voice
(
The Voice Foundation
,
New York
), pp.
15
31
.
46.
Rothenberg
,
M.
,
Miller
,
D.
,
Molitor
,
R.
, and
Leffingwell
,
D.
(
1987
). “
The control of air flow during loud soprano singing
,”
J. Voice
1
(
3
),
262
268
.
47.
Scherer
,
R. C.
(
2017
). “
Laryngeal function during phonation
,” in
Professional Voice: The Science and Art of Clinical Care
, edited by
R. T.
Sataloff
(
Plural Publishing
,
San Diego, CA
), pp.
281
308
.
48.
Smith
,
B. L.
,
Nemcek
,
S. P.
,
Swinarski
,
K. A.
, and
Jiang
,
J. J.
(
2013
). “
Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments
,”
J. Voice
27
(
3
),
261
266
.
49.
Smith
,
S. L.
, and
Titze
,
I. R.
(
2017
). “
Characterization of flow-resistant tubes used for semi-occluded vocal tract voice training and therapy
,”
J. Voice
31
(
1
),
113.e1
113.e8
.
50.
Story
,
B. H.
,
Laukkanen
,
A. M.
, and
Titze
,
I. R.
(
2000
). “
Acoustic impedance of an artificially lengthened and constricted vocal tract
,”
J. Voice
14
(
4
),
455
469
.
51.
Sundberg
,
J.
(
1974
). “
Articulatory interpretation of the singing formants
,”
J. Acoust. Soc. Am.
55
,
838
844
.
52.
Sundberg
,
J.
,
,
F. M.
, and
Gill
,
B. P.
(
2013
). “
Formant tuning strategies in professional male opera singers
,”
J. Voice
27
(
3
),
278
288
.
53.
Takemoto
,
H.
,
Adachi
,
S.
,
Kitamura
,
T.
,
Mokhtari
,
P.
, and
Honda
,
K.
(
2006
). “
Acoustic roles of the laryngeal cavity in vocal tract resonance
,”
J. Acoust. Soc. Am.
120
(
4
),
2228
2238
.
54.
Tangney
,
J.
,
Scholp
,
A.
,
Kang
,
J.
,
Raj
,
H.
, and
Jiang
,
J. J.
(
2019
). “
Effects of varying lengths and diameters during straw phonation on an excised canine model
,”
J. Voice
35
,
85
93
.
55.
Titze
,
I. R.
(
1988
). “
The physics of small‐amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
(
4
),
1536
1552
.
56.
Titze
,
I. R.
(
1991
). “
Phonation threshold pressure: A missing link in glottal aerodynamics
,”
J. Acoust. Soc. Am.
90
(
4
),
2344
.
57.
Titze
,
I. R.
(
2001
). “
Acoustic interpretation of resonant voice
,”
J. Voice
15
(
4
),
519
528
.
58.
Titze
,
I. R.
(
2004a
). “
A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice
,”
J. Voice
18
(
3
),
292
298
.
59.
Titze
,
I. R.
(
2004b
). “
Theory of glottal airflow and source-filter interaction in speaking and singing
,”
Acta Acust. united Ac.
90
(
4
),
641
648
.
60.
Titze
,
I. R.
(
2006
). “
Voice training and therapy with a semi-occluded vocal tract: Rationale and scientific underpinnings
,”
J. Speech. Lang. Hear. Res.
49
(
2
),
448
459
.
61.
Titze
,
I. R.
(
2008
). “
Nonlinear source–filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
(
5
),
2733
2749
.
62.
Titze
,
I. R.
(
2009
). “
Phonation threshold pressure measurement with a semi-occluded vocal tract
,”
J. Speech. Lang. Hear. Res.
52
(
4
),
1062
1072
.
63.
Titze
,
I. R.
(
2022
). “
How can vocal folds oscillate with a limited mucosal wave?
,”
JASA Express Lett.
2
(
10
),
105201
.
64.
Titze
,
I. R.
, and
Lucero
,
J. C.
(
2022
). “
Voice simulation: The next generation
,”
Appl. Sci.
12
(
22
),
11720
.
65.
Titze
,
I.
,
Riede
,
T.
, and
Popolo
,
P.
(
2008
). “
Nonlinear source–filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
(
4
),
1902
1915
.
66.
Titze
,
I. R.
,
Schmidt
,
S. S.
, and
Titze
,
M. R.
(
1995
). “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
(
5
),
3080
3084
.
67.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interactions of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
(
4
),
2234
2243
.
68.
Titze
,
I. R.
, and
Verdolini-Abbott
,
K. V.
(
2012
).
Vocology: The Science and Practice of Voice Habilitation
(
National Center for Voice and Speech
,
Salt Lake City, UT
).
69.
Verdolini-Marston
,
K.
,
Burke
,
M. K.
,
Lessac
,
A.
,
Glaze
,
L.
, and
Caldwell
,
E.
(
1995
). “
Preliminary study of two methods of treatment for laryngeal nodules
,”
J. Voice
9
(
1
),
74
85
.
70.
Verdolini
,
K.
,
Druker
,
D. G.
,
Palmer
,
P. M.
, and
Samawi
,
H.
(
1998
). “
Laryngeal adduction in resonant voice
,”
J. Voice
12
(
3
),
315
327
.
71.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006
). “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
(
3
),
1558
1569
.
72.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2009
). “
Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model
,”
J. Sound Vib.
322
(
1–2
),
299
313
.
73.
Zhang
,
Y.
,
Reynders
,
W. J.
,
Jiang
,
J. J.
, and
Tateya
,
I.
(
2007
). “
Determination of phonation instability pressure and phonation pressure range in excised larynges
,”
J. Speech. Lang. Hear. Res.
50
,
611
620
.
74.
Zhuang
,
P.
,
Sprecher
,
A. J.
,
Hoffman
,
M. R.
,
Zhang
,
Y.
,
Fourakis
,
M.
,
Jiang
,
J. J.
, and
Wei
,
C. S.
(
2009
). “
Phonation threshold flow measurements in normal and pathological phonation
,”
Laryngoscope
119
(
4
),
811
815
.

Supplementary Material

You do not currently have access to this content.