This article investigates the interactions of two-plane waves in weakly nonlinear elastic solids containing quadratic and cubic nonlinearity. The analytical solutions for generated combined harmonic waves are derived using the Green's function approach applied to a generated system of quasi-linear equations of motion. Wave mixing solutions are obtained and include shape functions that permit closed-form solutions for a variety of interaction geometries. An explicit example is highlighted for a spherical interaction volume assuming isotropic elastic constants. Several parameters of the generated field after mixing are analyzed including resonant and nonresonant mixing, the role of interaction angle, and the frequencies of the two incident waves. Wave mixing offers the potential for sensing localized elastic nonlinearity and the present model can be used to help design experimental configurations.

1.
J.-Y.
Kim
,
L. J.
Jacobs
,
J.
Qu
, and
J. W.
Littles
, “
Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves
,”
J. Acoust. Soc. Am.
120
,
1266
1273
(
2006
).
2.
J. H.
Cantrell
and
W. T.
Yost
, “
Nonlinear ultrasonic characterization of fatigue microstructures
,”
Int. J. Fatigue
23
,
487
490
(
2001
).
3.
A. J.
Croxford
,
P. D.
Wilcox
,
B. W.
Drinkwater
, and
P. B.
Nagy
, “
The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue
,”
J. Acoust. Soc. Am.
126
(
5
),
EL117
EL122
(
2009
).
4.
G.
Tang
,
M.
Liu
,
L. J.
Jacobs
, and
J.
Qu
, “
Detecting localized plastic strain by a scanning collinear wave mixing method
,”
J. Nondestr. Eval.
33
,
196
204
(
2014
).
5.
A.
Demčenko
,
V.
Koissin
, and
V. A.
Korneev
, “
Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure
,”
Ultrasonics
54
(
2
),
684
693
(
2014
).
6.
J.
Jiao
,
H.
Lv
,
C.
He
, and
B.
Wu
, “
Fatigue crack evaluation using the non-collinear wave mixing technique
,”
Smart Mater. Struct.
26
(
6
),
065005
(
2017
).
7.
M.
Sun
,
Y.
Xiang
,
M.
Deng
,
J.
Xu
, and
F.
Xuan
, “
Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity
,”
NDT&E Int.
93
,
1
6
(
2018
).
8.
B.
Yuan
,
G.
Shui
, and
Y. S.
Wang
, “
Evaluating and locating plasticity damage using collinear mixing waves
,”
J. Mater. Eng. Perform.
29
,
4575
4585
(
2020
).
9.
M.
Liu
,
G.
Tang
,
L. J.
Jacobs
, and
J.
Qu
, “
Measuring acoustic nonlinearity parameter using collinear wave mixing
,”
J. Appl. Phys.
112
(
2
),
024908
(
2012
).
10.
H.
Sohn
,
H. J.
Lim
,
M. P.
DeSimio
,
K.
Brown
, and
M.
Derriso
, “
Nonlinear ultrasonic wave modulation for online fatigue crack detection
,”
J. Sound Vib.
333
(
5
),
1473
1484
(
2014
).
11.
J.
Jiao
,
J.
Sun
,
N.
Li
,
G.
Song
,
B.
Wu
, and
C.
He
, “
Micro-crack detection using a collinear wave mixing technique
,”
NDT&E Int.
62
,
122
129
(
2014
).
12.
H.
Lv
,
J.
Jiao
,
B.
Wu
, and
C.
He
, “
Evaluation of fatigue crack orientation using non-collinear shear wave mixing method
,”
J. Nondestruct. Eval.
37
,
74
(
2018
).
13.
H.
Lv
,
J.
Zhang
,
J.
Jiao
, and
A.
Croxford
, “
Fatigue crack inspection and characterisation using non-collinear shear wave mixing
,”
Smart Mater. Struct.
29
(
5
),
055024
(
2020
).
14.
Y.
Zhao
,
Y.
Xu
,
Z.
Chen
,
C.
Peng
, and
H.
Ning
, “
Detection and characterization of randomly distributed micro-cracks in elastic solids by one-way collinear mixing method
,”
J. Nondestruct. Eval.
37
,
47
(
2018
).
15.
X.
Sun
,
H.
Liu
,
Y.
Zhao
,
J.
Qu
,
M.
Deng
, and
N.
Hu
, “
The zero-frequency component of bulk waves in solids with randomly distributed micro-cracks
,”
Ultrasonics
107
,
106172
(
2020
).
16.
G. L.
Jones
and
D. R.
Kobett
, “
Interaction of elastic waves in an isotropic solid
,”
J. Acoust. Soc. Am.
35
,
5
10
(
1963
).
17.
V. A.
Korneev
and
A.
Demčenko
, “
Possible second-order nonlinear interactions of plane waves in an elastic solid
,”
J. Acoust. Soc. Am.
135
,
591
598
(
2014
).
18.
L. K.
Zarembo
and
V. A.
Krasil'nikov
, “
Nonlinear phenomena in the propagation of elastic waves in solids
,”
Sov. Phys. Usp.
13
,
778
797
(
1971
).
19.
Z.
Chen
,
G.
Tang
,
Y.
Zhao
,
L. J.
Jacobs
, and
J.
Qu
, “
Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity
,”
J. Acoust. Soc. Am.
136
,
2389
–2404 (
2014
).
20.
X.
Gao
and
J.
Qu
, “
Necessary and sufficient conditions for resonant mixing of plane waves in elastic solids with quadratic nonlinearity
,”
J. Acoust. Soc. Am.
148
,
1934
1946
(
2020
).
21.
R. N.
Thurston
and
M. J.
Shapiro
, “
Interpretation of ultrasonic experiments on finite-amplitude waves
,”
J. Acoust. Soc. Am.
41
,
1112
1125
(
1967
).
22.
R. N.
Thurston
, “
Waves in solids
,” in
Mechanics of Solids
, edited by
C.
Truesdell
(
Springer-Verlag
,
Berlin
,
1984
), Vol.
4
, pp.
109
308
.
23.
C. M.
Kube
and
A. P.
Arguelles
, “
Ultrasonic harmonic generation from materials with up to cubic nonlinearity
,”
J. Acoust. Soc. Am.
142
(
2
),
EL224
EL230
(
2017
).
24.
V. K.
Chillara
and
C. J.
Lissenden
, “
Constitutive model for third harmonic generation in elastic solids
,”
Int. J. Non. Linear Mech.
82
,
69
74
(
2016
).
25.
K.
Van Den Abeele
and
M. A.
Breazeale
, “
Theoretical model to describe dispersive nonlinear properties of lead zirconate-titanate ceramics
,”
J. Acoust. Soc. Am.
99
,
1430
1437
(
1996
).
26.
C.
Cattani
and
Y. Y.
Rushchitskii
, “
Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects
,”
Int. Appl. Mech.
39
,
1361
1399
(
2003
).
27.
G.
Ren
,
J.
Kim
, and
K. Y.
Jhang
, “
Relationship between second- and third-order acoustic nonlinear parameters in relative measurement
,”
Ultrasonics
56
,
539
544
(
2015
).
28.
H.
Seo
,
G.
Ren
,
J.
Kim
, and
K.-Y.
Jhang
, “
Relative measurement of acoustic nonlinear parameters and comparison of sensitivity to thermal aging
,”
AIP Conf. Proc.
1650
,
870
882
(
2015
).
29.
W.
Li
,
T.
Shi
,
X.
Qin
, and
M.
Deng
, “
Detection and location of surface damage using third-order combined harmonic waves generated by non-collinear ultrasonic waves mixing
,”
Sensors
21
(
18
),
6027
(
2021
).
30.
X.
Liu
,
L.
Wang
,
Z.
Gong
,
X.
Wang
,
J.
Yang
,
B.
Liang
, and
J.
Cheng
, “
Two-way collinear mixing of a longitudinal and a transverse plane wave in materials with cubic nonlinearity
,”
Waves Random Complex Media
32
(
1
),
2138
2157
(
2022
).
31.
X.
Liu
,
L.
Wang
, and
G.
Zhang
, “
One-way collinear wave mixing in solids with cubic nonlinearity based on Murnaghan's potential
,”
Wave Motion
120
,
103160
(
2023
).
32.
J. E.
Gubernatis
,
E.
Domany
,
J. A.
Krumhansl
, and
M.
Huberman
, “
The born approximation in the theory of the scattering of elastic waves by flaws
,”
J. Appl. Phys.
48
,
2812
2819
(
1977
).
33.
C. M.
Kube
, “
Scattering of harmonic waves from a nonlinear elastic inclusion
,”
J. Acoust. Soc. Am.
141
,
4756
4767
(
2017
).
34.
A. N.
Norris
, “
Finite-amplitude waves in solids
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D.
Blackstock
(
Academic Press
,
San Diego
,
1998
), pp.
263
278
.
35.
Y.
Wang
and
J. D.
Achenbach
, “
Interesting effects in harmonic generation by plane elastic waves
,”
Acta Mech. Sin.
33
,
754
762
(
2017
).
36.
G.
Tang
,
L. J.
Jacobs
, and
J.
Qu
, “
Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity
,”
J. Acoust. Soc. Am.
131
,
2570
2578
(
2012
).
37.
R.
Snieder
, “
General theory of elastic wave scattering
,” in
Scattering
, edited by
R.
Pike
and
P.
Sabatier
(
Academic Press
,
London
,
2002
), pp.
528
542
.
38.
O. M.
Krasilnikov
and
Y. K.
Vekilov
, “
Fourth-order elastic moduli of polycrystals
,”
Phys. Rev. B
100
,
134107
(
2019
).
39.
D. J.
Barnard
,
G. E.
Dace
,
D. K.
Rehbein
, and
O.
Buck
, “
Acoustic harmonic generation at diffusion bonds
,”
J. Nondestruct. Eval.
16
,
77
89
(
1997
).
40.
M. A.
Breazeale
and
J.
Philip
, “
Determination of third-order elastic constants from ultrasonic harmonic generation measurements
,” in
Physical Acoustics
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic Press
,
New York
,
1984
), Vol.
17
, pp.
1
60
.
41.
L. D.
Landau
and
E. M.
Lifshitz
, “
Theory of elasticity
,” in
Course of Theoretical Physics
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1986
), Vol.
7
, pp.
1
186
.
You do not currently have access to this content.