We present a sensing modality using the geometric phase of acoustic waves propagating in an underwater environment. We experimentally investigate the effect of scattering by a small subwavelength perturbation on a flat submerged surface. We represent the state of an acoustic field in the unperturbed and perturbed cases as multidimensional vectors. The change in geometric phase is obtained by calculating the angle between those vectors. This angle represents a rotation of the state vector of the wave due to scattering by the perturbation. We perform statistical analysis to define a signal-to-noise ratio to quantify the sensitivity of the geometric phase measurement and compare it to magnitude based measurements. This geometric phase sensing modality is shown to have higher sensitivity than the magnitude based sensing approach.

1.
B. T.
Hefner
and
P. L.
Marston
, “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
,
3313
3316
(
1999
).
2.
J.
Lekner
, “
Acoustic beams with angular momentum
,”
J. Acoust. Soc. Am.
120
,
3475
3478
(
2006
).
3.
T.
Brunet
,
J.-L.
Thomas
,
R.
Marchiano
, and
F.
Coulouvrat
, “
Experimental observation of azimuthal shock waves on nonlinear acoustical vortices
,”
New J. Phys.
11
,
013002
(
2009
).
4.
B. T.
Hefner
and
B. R.
Dzikowicz
, “
A spiral wave front beacon for underwater navigation: Basic concept and modeling
,”
J. Acoust. Soc. Am.
129
,
3630
3639
(
2011
).
5.
T.
Brunet
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Transverse shift of helical beams and subdiffraction imaging
,”
Phys. Rev. Lett.
105
,
034301
(
2010
).
6.
M. D.
Guild
,
J. S.
Rogers
,
C. A.
Rohde
,
T. P.
Martin
, and
G. J.
Orris
, “
Far-field superresolution imaging using shaped acoustic vortices
,” in
Proc. SPIE 10600, Health Monitoring of Structural and Biological Systems XII, 1060015
(SPIE, Bellingham, WA,
2018
), p.
40
.
7.
M. D.
Guild
,
C. J.
Naify
,
T. P.
Martin
,
C. A.
Rohde
, and
G. J.
Orris
, “
Superresolution using an acoustic vortex wave antenna
,”
J. Acoust. Soc. Am.
140
,
3102
(
2016
).
8.
B.
Gauthier
,
G.
Painchaud-April
,
A.
Le Duff
, and
P.
Bélanger
, “
Towards an alternative to time of flight diffraction using instantaneous phase coherence imaging for characterization of crack-like defects
,”
Sensors
21
,
730
(
2021
).
9.
C.
Fritsch
,
J.
Camacho
, and
M.
Parrilla
, “
New ultrasound imaging techniques with phase coherence processing
,”
Ultrasonics
50
,
122
126
(
2010
).
10.
J.
Camacho
,
C.
Fritsch
,
J.
Fernandez-Cruza
, and
M.
Parilla
, “
Phase coherence imaging: Principles, application, and current developments
,”
Proc. Mtgs. Acoust.
38
,
055012
(
2019
).
11.
T. D.
Lata
,
P. A.
Deymier
,
K.
Runge
,
F.-M.
Le Tourneau
,
R.
Ferrière
, and
F.
Huettmann
, “
Topological acoustic sensing of tree spatial patterns in a model forest
,”
Ecol. Model.
419
,
108964
(
2020
).
12.
T. D.
Lata
,
P. A.
Deymier
,
K.
Runge
,
F.-M. L.
Tourneau
,
R.
Ferrière
, and
F.
Huettmann
, “
Resonant topological acoustic sensing of permafrost thawing
,”
Cold Reg. Sci. Tech.
199
,
103569
(
2022
).
13.
T. D.
Lata
,
P. A.
Deymier
,
K.
Runge
, and
W.
Clark
, “
Topological acoustic sensing using nonseparable superpositions of acoustic waves
,”
Vibration
5
,
513
529
(
2022
).
14.
M. A.
Hasan
and
P. A.
Deymier
, “
Modelling and simulations of a nonlinear granular metamaterial: Application to geometric phase-based mass sensing
,”
Modell. Simul. Mater. Sci. Eng.
30
,
074002
(
2022
).
15.
M. A.
Hasan
,
L.
Calderin
,
T. D.
Lata
,
P.
Lucas
,
K.
Runge
, and
P. A.
Deymier
, “
The sound of Bell states
,”
Commun. Phys.
2
,
106
(
2019
).
You do not currently have access to this content.