Muddy sediments cover significant portions of continental shelves, but their physical properties remain poorly understood compared to sandy sediments. This paper presents a generally applicable model for sediment-column structure and variability on the New England Mud Patch (NEMP), based on trans-dimensional Bayesian inversion of wide-angle, broadband reflection-coefficient data in this work and in two previously published reflection-coefficient inversions at different sites on the NEMP. The data considered here include higher frequencies and larger bandwidth and cover lower reflection grazing angles than the previous studies, hence, resulting in geoacoustic profiles with significantly better structural resolution and smaller uncertainties. The general sediment-column structure model includes an upper mud layer in which sediment properties change slightly with depth due to near-surface processes, an intermediate mud layer with nearly uniform properties, and a geoacoustic transition layer where properties change rapidly with depth (porosity decreases and sound speed, density, and attenuation increase) due to increasing sand content in the mud above a sand layer. Over the full frequency band considered in the new and two previous data sets (400–3125 Hz), there is no significant sound-speed dispersion in the mud, and attenuation follows an approximately linear frequency dependence.

1.
M. D.
Collins
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Nonlinear inversion for ocean-bottom properties
,”
J. Acoust. Soc. Am.
92
,
2770
2783
(
1992
).
2.
S. E.
Dosso
,
M. L.
Yeremy
,
J. M.
Ozard
, and
N. R.
Chapman
, “
Estimation of ocean-bottom properties by matched-field inversion of acoustic field data
,”
IEEE J. Ocean. Eng.
18
,
232
239
(
1993
).
3.
P.
Gerstoft
, “
Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach
,”
J. Acoust. Soc. Am.
97
,
2181
2190
(
1995
).
4.
Z.-H.
Michalopoulou
, “
Matched-impulse-response processing for shallow-water localization and geoacoustic inversion
,”
J. Acoust. Soc. Am.
108
,
2082
2090
(
2000
).
5.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
,
K. C.
Focke
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
,
205
222
(
2003
).
6.
S. E.
Dosso
,
P. L.
Nielsen
, and
M. J.
Wilmut
, “
Data error covariance in matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
119
,
208
219
(
2006
).
7.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Full wave-field reflection coefficient inversion
,”
J. Acoust. Soc. Am.
122
,
3327
3337
(
2007
).
8.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties
,”
J. Acoust. Soc. Am.
123
,
1306
1317
(
2008
).
9.
C. W.
Holland
, “
Geoacoustic inversion for fine-grained sediments
,”
J. Acoust. Soc. Am.
111
,
1560
1564
(
2002
).
10.
C. W.
Holland
and
J.
Osler
, “
High-resolution geoacoustic inversion in shallow water: A joint time- and frequency-domain technique
,”
J. Acoust. Soc. Am.
107
,
1263
1279
(
2000
).
11.
C. W.
Holland
,
C. M.
Smith
,
Z.
Lowe
, and
J.
Dorminy
, “
Seabed observations at the New England Mud Patch: Reflection and scattering measurements and direct geoacoustic information
,”
IEEE J. Ocean. Eng.
47
,
578
593
(
2022
).
12.
P. S.
Wilson
,
D. P.
Knobles
, and
T. A.
Neilsen
, “
Guest editorial: An overview of the seabed characterization experiment
,”
IEEE J. Ocean. Eng.
45
,
1
13
(
2020
).
13.
J.
Belcourt
,
C. W.
Holland
,
S. E.
Dosso
, and
J.
Dettmer
, “
Depth-dependent geoacoustic interferences with dispersion at the New England Mud Patch via reflection coefficient inversion
,”
IEEE J. Ocean. Eng.
45
,
69
91
(
2020
).
14.
C. W.
Holland
and
S. E.
Dosso
, “
On compressional wave attenuation in muddy marine sediments
,”
J. Acoust. Soc. Am.
149
,
3674
3687
(
2021
).
15.
J. A.
Goff
,
A. H.
Reed
,
G.
Gawarkiewicz
,
P. S.
Wilson
, and
D. P.
Knobles
, “
Stratigraphic analysis of a sediment pond within the New England Mud Patch: New constraints from high-resolution chirp acoustic reflection data
,”
Mar. Geol.
412
,
81
94
(
2019
).
16.
J. D.
Chaytor
,
M. S.
Ballard
,
B. J.
Buczkowski
,
J. A.
Goff
,
K. M.
Lee
,
A. H.
Reed
, and
A. A.
Boggess
, “
Measurements of geologic characteristics and geophysical properties of sediments from the New England Mud Patch
,”
IEEE J. Ocean. Eng.
47
,
503
530
(
2022
).
17.
J.
Belcourt
,
S. E.
Dosso
,
C. W.
Holland
, and
J.
Dettmer
, “
Linearized Bayesian inversion for experiment geometry at the New England Mud Patch
,”
IEEE J. Ocean. Eng.
45
,
60
68
(
2020
).
18.
M. J.
Buckingham
, “
On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
122
,
1486
1501
(
2007
).
19.
C. W.
Holland
and
J.
Dettmer
, “
In situ sediment dispersion estimates in the presence of discrete layers and gradients
,”
J. Acoust. Soc. Am.
133
,
50
61
(
2013
).
20.
C. W.
Holland
,
P. L.
Nielsen
,
J.
Dettmer
, and
S. E.
Dosso
, “
Resolving meso-scale seabed variability using reflection measurements from an autonomous underwater vehicle
,”
J. Acoust. Soc. Am.
131
,
1066
1078
(
2012
).
21.
J.
Dettmer
,
C. W.
Holland
, and
S. E.
Dosso
, “
Trans-dimensional uncertainty estimation for dispersive seabed sediments
,”
Geophysics
78
,
WB63
WB76
(
2013
).
22.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
New York
,
1994
), pp.
1
794
.
23.
D.
Levin
, “
Fast integration of rapidly oscillatory functions
,”
J. Comput. Appl. Math.
67
,
95
101
(
1996
).
24.
J. E.
Quijano
,
S. E.
Dosso
,
J.
Dettmer
, and
C. W.
Holland
, “
Fast computation of seabed spherical-wave reflection coefficients in geoacoustic inversion
,”
J. Acoust. Soc. Am.
138
,
2106
2117
(
2015
).
25.
P. J.
Green
, “
Trans-dimensional Markov chain Monte Carlo
,” in
Highly Structured Stochastic Systems
(
Oxford University
,
New York
,
2003
), pp.
179
198
.
26.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Trans-dimensional geoacoustic inversion
,”
J. Acoust. Soc. Am.
128
,
3393
3405
(
2010
).
27.
S. E.
Dosso
,
J.
Dettmer
,
G.
Steininger
, and
C. W.
Holland
, “
Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation
,”
Inverse Probl.
30
,
114018
114029
(
2014
).
28.
P. J.
Green
, “
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
,”
Biometrika
82
,
711
732
(
1995
).
29.
D. J.
Earl
and
M. W.
Deem
, “
Parallel tempering: Theory, applications, and new perspectives
,”
Phys. Chem. Chem. Phys.
7
,
3910
3916
(
2005
).
30.
A.
Jasra
,
D. A.
Stephens
, and
C. C.
Holmes
, “
Population-based reversible jump Markov chain Monte Carlo
,”
Biometrika
94
,
787
807
(
2007
).
31.
S. E.
Dosso
,
C. W.
Holland
, and
M.
Sambridge
, “
Parallel tempering in strongly nonlinear geoacoustic inversion
,”
J. Acoust. Soc. Am.
132
,
3030
3040
(
2012
).
32.
S. E.
Dosso
and
M. J.
Wilmut
, “
Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion
,”
J. Acoust. Soc. Am.
124
,
82
97
(
2008
).
33.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer
,
New York
,
2007
), pp.
114
188
.
34.
M. D.
Richardson
, “
In-situ, shallow-water sediments geoacoustic properties
,” in
Shallow Water Acoustics
, edited by
R.
Zhang
and
J.-X.
Zhou
(
China Ocean
,
Beijing
,
1997
), pp.
163
170
.
35.
S. E.
Dosso
and
J.
Bonnel
, “
Hybrid seabed parameterization to investigate geoacoustic gradients at the New England Mud Patch
,”
IEEE J. Ocean. Eng.
47
,
620
634
(
2022
).
36.
T. J.
Gorgas
,
R. H.
Wilkens
,
S. S.
Fu
,
L. N.
Frazer
,
M. D.
Richardson
,
K. B.
Briggs
, and
H.
Lee
, “
In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California
,”
Mar. Geol.
182
,
103
119
(
2002
).
37.
J.
Yang
and
D. R.
Jackson
, “
Measurement of sound speed in fine-grained sediments during the seabed characterization experiment
,”
IEEE J. Ocean. Eng.
45
,
39
50
(
2020
).
38.
D. P.
Knobles
,
C. D.
Escobar-Amado
,
M. J.
Buckingham
,
W. S.
Hodgkiss
, and
P. S.
Wilson
, “
Statistical inference of sound speed and attenuation dispersion of a fine-grained marine sediment
,”
IEEE J. Ocean. Eng.
47
,
553
564
(
2022
).
39.
L.
Wan
,
M.
Badiey
,
D. P.
Knobles
,
P. S.
Wilson
, and
J.
Goff
, “
Estimates of low-frequency sound speed and attenuation in a surface mud layer using low-order modes
,”
IEEE J. Ocean. Eng.
45
,
201
211
(
2020
).
40.
Y.-M.
Jiang
,
S. E.
Dosso
,
J.
Bonnel
,
P. S.
Wilson
, and
D. P.
Knobles
, “
Passive acoustic glider for seabed characterization at the New England Mud Patch
,”
IEEE J. Ocean. Eng.
47
,
541
552
(
2022
).
41.
J.
Bonnel
,
S. E.
Dosso
,
D.
Eleftherakis
, and
N. R.
Chapman
, “
Trans-dimensional inversion of modal dispersion data on the New England Mud Patch
,”
IEEE J. Ocean. Eng.
45
,
116
130
(
2020
).
42.
D.
Tollefsen
,
S. E.
Dosso
, and
D. P.
Knobles
, “
Ship-of-opportunity noise inversions for geoacoustic profiles of a layered mud-sand seabed
,”
IEEE J. Ocean. Eng.
45
,
189
200
(
2020
).
You do not currently have access to this content.