Psychophysical experiments explored how the repeated presentation of a context, consisting of an adaptor and a target, induces plasticity in the localization of an identical target presented alone on interleaved trials. The plasticity, and its time course, was examined both in a classroom and in an anechoic chamber. Adaptors and targets were 2 ms noise clicks and listeners were tasked with localizing the targets while ignoring the adaptors (when present). The context was either simple, consisting of a single-click adaptor and a target, or complex, containing either a single-click or an eight-click adaptor that varied from trial to trial. The adaptor was presented either from a frontal or a lateral location, fixed within a run. The presence of context caused responses to the isolated targets to be displaced up to 14° away from the adaptor location. This effect was stronger and slower if the context was complex, growing over the 5 min duration of the runs. Additionally, the simple context buildup had a slower onset in the classroom. Overall, the results illustrate that sound localization is subject to slow adaptive processes that depend on the spatial and temporal structure of the context and on the level of reverberation in the environment.

1.
Braasch
,
J. D.
, and
Hartung
,
K.
(
2002
). “
Localization in the presence of a distracter and reverberation in the frontal horizontal plane. I. Psychoacoustical data
,”
Acta Acust. united Acoust.
88
,
942
955
, available at https://api.semanticscholar.org/CorpusID:535248.
2.
Brown
,
A. D.
,
Stecker
,
G. C.
, and
Tollin
,
D. J.
(
2015
). “
The precedence effect in sound localization
,”
J. Assoc. Res. Otolaryngol.
16
(
1
),
1
28
.
3.
Brown
,
G. J.
,
Beeston
,
A. V.
, and
Palomaki
,
K. J.
(
2012
). “
Perceptual compensation for the effects of reverberation on consonant identification: A comparison of human and machine performance
,” in
13th Annual Conference ISCA
, Vol.
13
, pp.
1714
1717
.
4.
Canévet
,
C.
, and
Meunier
,
S.
(
1996
). “
Effect of adaptation on auditory localization and lateralization
,”
Acta Acust. united Acoust.
82
,
149
157
.
5.
Carlile
,
S.
(
2014
). “
The plastic ear and perceptual relearning in auditory spatial perception
,”
Front. Neurosci.
8
,
237.
6.
Carlile
,
S.
,
Hyams
,
S.
, and
Delaney
,
S.
(
2001
). “
Systematic distortions of auditory space perception following prolonged exposure to broadband noise
,”
J. Acoust. Soc. Am.
110
(
1
),
416
424
.
7.
Clifton
,
R. K.
, and
Freyman
,
R. L.
(
1997
). “
The precedence effect: Beyond echo suppression
,” in
Binaural and Spatial Hearing in Real and Virtual Environments
, edited by
R.
Gilkey
and
T.
Anderson
(
Springer, New York
), pp.
233
256
.
8.
Clifton
,
R. K.
,
Freyman
,
R. L.
, and
Meo
,
J.
(
2002
). “
What the precedence effect tells us about room acoustics
,”
Percept. Psychophys.
64
(
2
),
180
188
.
9.
Dahmen
,
J. C.
,
Keating
,
P.
,
Nodal
,
F. R.
,
Schulz
,
A. L.
, and
King
,
A. J.
(
2010
). “
Adaptation to stimulus statistics in the perception and neural representation of auditory space
,”
Neuron
66
(
6
),
937
948
.
10.
Dingle
,
R. N.
,
Hall
,
S. E.
, and
Phillips
,
D. P.
(
2012
). “
The three-channel model of sound localization mechanisms: Interaural level differences
,”
J. Acoust. Soc. Am.
131
(
5
),
4023
4029
.
11.
Djelani
,
T.
, and
Blauert
,
J.
(
2001
). “
Investigations into the build-up and breakdown of the precedence effect
,”
Acta Acust. united Acoust.
87
,
253
261
, available at http://www.ingentaconnect.com/content/dav/aaua/2001/00000087/00000002/art00012.
12.
Flügel
,
J. C.
(
1920
). “
On local fatigue in the auditory system
,”
Br. J. Psychol.
11
,
105
134
.
13.
Freyman
,
R. L.
,
Clifton
,
R. K.
, and
Litovsky
,
R. Y.
(
1991
). “
Dynamic processes in the precedence effect
,”
J. Acoust. Soc. Am.
90
(
2
),
874
884
.
14.
Hartmann
,
W. M.
, and
Rakerd
,
B.
(
1989
). “
On the minimum audible angle–A decision theory approach
,”
J. Acoust. Soc. Am.
85
,
2031
2041
.
15.
Herron
,
T.
(
2005
). “
C language exploratory analysis of variance with enhancements
,” http://www.ebire.org/hcnlab/software/cleave.html (Last viewed January 30, 2005).
16.
Hládek
,
Ľ.
,
Tomoriová
,
B.
, and
Kopčo
,
N.
(
2017
). “
Temporal characteristics of contextual effects in sound localization
,”
J. Acoust. Soc. Am.
142
(
5
),
3288
3296
.
17.
King
,
A. J.
,
Parsons
,
C. H.
,
Moore
,
D. R.
,
King
,
A. J.
,
Parsons
,
C. H.
, and
Moore
,
D. R.
(
2000
). “
Plasticity in the neural coding of auditory space in the mammalian brain
,”
Proc. Natl. Acad. Sci. U.S.A.
97
(
22
),
11821
11828
.
18.
Klingel
,
M.
,
Kopčo
,
N.
, and
Laback
,
B.
(
2021
). “
Reweighting of binaural localization cues induced by lateralization training
,”
J. Assoc. Res. Otolaryngol.
22
(
5
),
551
566
.
19.
Kopčo
,
N.
,
Andrejková
,
G.
,
Best
,
V.
, and
Shinn-Cunningham
,
B.
(
2017
). “
Streaming and sound localization with a preceding distractor
,”
J. Acoust. Soc. Am.
141
(
4
),
EL331
EL337
.
20.
Kopčo
,
N.
,
Best
,
V.
, and
Carlile
,
S.
(
2010
). “
Speech localization in a multitalker mixture
,”
J. Acoust. Soc. Am.
127
(
3
),
1450
1457
.
21.
Kopčo
,
N.
,
Best
,
V.
, and
Shinn-Cunningham
,
B. G.
(
2007
). “
Sound localization with a preceding distractor
,”
J. Acoust. Soc. Am.
121
,
420
432
.
22.
Kopčo
,
N.
,
Marcinek
,
L.
,
Tomoriová
,
B.
, and
Hládek
,
Ľ.
(
2015
). “
Contextual plasticity, top-down, and non-auditory factors in sound localization with a distractor
,”
J. Acoust. Soc. Am.
137
,
EL281
EL287
.
23.
Kumpik
,
D. P.
,
Kacelnik
,
O.
, and
King
,
A. J.
(
2010
). “
Adaptive reweighting of auditory localization cues in response to chronic unilateral earplugging in humans
,”
J. Neurosci.
30
(
14
),
4883
4894
.
24.
Laback
,
B.
(
2023
). “
Contextual lateralization based on interaural level differences is preshaped by the auditory periphery and predominantly immune against sequential segregation
,”
Trends Hear.
27
,
233121652311719
233121652311723
.
25.
Lingner
,
A.
,
Pecka
,
M.
,
Leibold
,
C.
, and
Grothe
,
B.
(
2018
). “
A novel concept for dynamic adjustment of auditory space
,”
Sci. Rep.
8
(
1
),
1
12
.
26.
Litovsky
,
R. Y.
, and
Macmillan
,
N. A.
(
1994
). “
Sound localization precision under conditions of the precedence effect: Effects of azimuth and standard stimuli
,”
J. Acoust. Soc. Am.
96
(
2
),
753
758
.
27.
Maddox
,
R. K.
,
Pospisil
,
D. A.
,
Stecker
,
G. C.
, and
Lee
,
A. K. C.
(
2014
). “
Directing eye gaze enhances auditory spatial cue discrimination
,”
Curr. Biol.
24
(
7
),
748
752
.
28.
Magnusson
,
A. K.
,
Park
,
T. J.
,
Pecka
,
M.
,
Grothe
,
B.
, and
Koch
,
U.
(
2008
). “
Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem
,”
Neuron
59
,
125
137
.
29.
Moore
,
T. M.
,
Picou
,
E. M.
,
Hornsby
,
B. W. Y.
,
Gallun
,
F. J.
, and
Stecker
,
G. C.
(
2020
). “
Binaural spatial adaptation as a mechanism for asymmetric trading of interaural time and level differences
,”
J. Acoust. Soc. Am.
148
(
2
),
526
541
.
30.
Phillips
,
D. P.
, and
Hall
,
S. E.
(
2001
). “
Spatial and temporal factors in auditory saltation
,”
J. Acoust. Soc. Am.
110
(
3
),
1539
1547
.
31.
Phillips
,
D. P.
, and
Hall
,
S. E.
(
2005
). “
Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level
,”
Hear. Res.
202
(
1–2
),
188
199
.
32.
Recanzone
,
G. H.
(
1998
). “
Rapidly induced auditory plasticity: The ventriloquism aftereffect
,”
Proc. Natl. Acad. Sci. U.S.A.
95
(
3
),
869
875
.
33.
Shinn-Cunningham
,
B. G.
,
Durlach
,
N. I.
, and
Held
,
R. M.
(
1998
). “
Adapting to supernormal auditory localization cues I: Bias and resolution
,”
J. Acoust. Soc. Am.
103
(
6
),
3656
3666
.
34.
Shinn-Cunningham
,
B. G.
,
Kopčo
,
N.
, and
Martin
,
T. J.
(
2005
). “
Localizing nearby sound sources in a classroom: Binaural room impulse responses
,”
J. Acoust. Soc. Am.
117
(
5
),
3100
3115
.
35.
Stange
,
A.
,
Myoga
,
M. H.
,
Lingner
,
A.
,
Ford
,
M. C.
,
Alexandrova
,
O.
,
Felmy
,
F.
,
Pecka
,
M.
,
Siveke
,
I.
, and
Grothe
,
B.
(
2013
). “
Adaptation in sound localization: From GABAB receptor–mediated synaptic modulation to perception
,”
Nat. Neurosci.
16
(
12
),
1840
1849
.
36.
Thurlow
,
W. R.
, and
Jack
,
C. E.
(
1973
). “
Some determinants of localization-adaptation effects for successive auditory stimuli
,”
J. Acoust. Soc. Am.
53
(
6
),
1573
1577
.
37.
Trapeau
,
R.
, and
Schöenwiesner
,
M.
(
2018
). “
The encoding of sound source elevation in the human auditory cortex
,”
J. Neurosci.
38
,
3252
3264
.
38.
van Wanrooij
,
M. M.
, and
van Opstal
,
A. J.
(
2007
). “
Sound localization under perturbed binaural hearing
,”
J. Neurophysiol.
97
,
715
726
.
39.
Vilfan
,
A.
, and
Duke
,
T.
(
2003
). “
Two adaptation processes in auditory hair cells together can provide an active amplifier
,”
Biophys. J.
85
(
1
),
191
203
.
You do not currently have access to this content.