Existing diffraction correction models for ultrasonic transmit-receive measurement systems rely on simplifying assumptions with respect to the boundary conditions at the transmitter or receiver. Common simplifications include approximating the sound field radiated by a piezoelectric transducer using a baffled piston model and assuming that the receiver's electrical response is proportional to the spatially averaged free-field pressure over its front surface. In many applications, such simplifications may be adequate, but their validity and accuracy need to be evaluated and quantified. Here, a diffraction correction model utilizing the full set of electrical and mechanical boundary conditions at the transmitter and receiver is presented, avoiding these simplifications. The model is based on finite element modeling of coaxially aligned piezoelectric transducers in a fluid medium. Comparison is made with existing models for an example case of cylindrical piezoelectric ceramic disk transducers operating in air at 50–300 kHz and 0.03–2 m apart, relevant for, e.g., sound velocity and absorption measurements in fluids and ultrasonic gas flow metering. In the near-field, errors introduced by the simplifications are up to 3 dB and 47° for the first radial resonance. Generally, such errors are application-specific and depend on distance, frequency, transducer construction, vibration pattern, and medium properties.

1.
ANSI
(
1997
). ANSI S1.15 (R2016),
Measurement Microphones, Part 1: Specifications for Laboratory Standard Microphones
(
American National Standards Institute
,
New York
).
2.
Arakawa
,
M.
,
Kushibiki
,
J.
, and
Aoki
,
N.
(
2004
). “
An evaluation of effective radiuses of bulk-wave ultrasonic transducers as circular piston sources for accurate velocity measurements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
496
501
.
3.
Auld
,
B. A.
(
1990
).
Acoustic Fields and Waves in Solids
(
R.E. Krieger
,
Malabar, FL
), pp.
73
86
, 271–275.
4.
Beissner
,
K.
(
1981
). “
Exact integral expression for the diffraction loss of a circular piston source
,”
Acustica
49
,
212
217
.
5.
Bermúdez
,
A.
,
Hervella-Nieto
,
L.
,
Prieto
,
A.
, and
Rodríguez
,
R.
(
2007
). “
An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems
,”
J. Comput. Phys.
223
,
469
488
.
6.
Bezdĕk
,
M.
,
Landes
,
H.
,
Rieder
,
A.
, and
Lerch
,
R.
(
2007
). “
A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
636
646
.
7.
Boubenia
,
R.
,
Rosenkrantz
,
E.
,
Despetis
,
F.
,
Combette
,
P.
, and
Ferrandis
,
J. Y.
(
2020
). “
Particulate metal composites as backing for ultrasonic transducers for continuous nondestructive measurements at moderate and high temperatures
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
,
2164
2175
.
8.
Brigham
,
O.
(
1988
).
The Fast Fourier Transform and Its Applications
(
Prentice-Hall
,
Englewood Cliffs, NJ
), pp.
341
344
.
9.
Chivers
,
R. C.
,
Bosselaar
,
L.
, and
Filmore
,
P. R.
(
1980
). “
Effective area to be used in diffraction corrections
,”
J. Acoust. Soc. Am.
68
,
80
84
.
10.
COMSOL AB
(
2020a
).
Acoustics Module User's Guide, COMSOL Multiphysics® 5.6
(
COMSOL AB
,
Stockholm, Sweden
), pp.
237
238
.
11.
COMSOL AB
(
2020b
).
COMSOL Multiphysics Reference Manual, COMSOL Multiphysics® 5.6
(
COMSOL AB
,
Stockholm, Sweden
), pp.
392
397
.
12.
Daly
,
C. J.
, and
Rao
,
N. A. H. K.
(
1999
). “
A spatially averaged impulse response for an unfocused piston transducer
,”
J. Acoust. Soc. Am.
105
,
1563
1566
.
13.
Daly
,
C. J.
, and
Rao
,
N. A. H. K.
(
2000
).
Scalar Diffraction from a Circular Aperture
(
Springer
,
New York, NY
), pp.
2
14
.
14.
Ejakov
,
S. G.
,
Phillips
,
S.
,
Dain
,
Y.
,
Lueptow
,
R. M.
, and
Visser
,
J. H.
(
2003
). “
Acoustic attenuation in gas mixtures with nitrogen: Experimental data and calculations
,”
J. Acoust. Soc. Am.
113
,
1871
1879
.
15.
Emerson Electric Co.
(
2022
). “
Product data sheet: Rosemount 3418, eight-path gas ultrasonic flow meter
,” https://www.emerson.com/documents/automation/product-data-sheet-rosemount-3418-en-5384532.pdf (Last viewed June 23, 2023).
16.
Feng
,
G.
,
Jian-Xin
,
W.
,
Bang-Rang
,
D.
,
Pin-Bo
,
D.
, and
Shi-Qi
,
H.
(
2018
). “
Influence of diffraction effects on attenuation measurement using pulse transmission method
,”
J. Geophys. Eng.
15
,
1610
1623
.
17.
Foldy
,
L. L.
, and
Primakoff
,
H.
(
1945
). “
A general theory of passive linear electroacoustic transducers and the electroacoustic reciprocity theorem. I
,”
J. Acoust. Soc. Am.
17
,
109
120
.
18.
Foote
,
K. G.
(
2014
). “
Discriminating between the nearfield and the farfield of acoustic transducers
,”
J. Acoust. Soc. Am.
136
,
1511
1517
.
19.
Forster
,
F. K.
,
Cullen
,
G. V.
, and
Wang
,
T. H.
(
1992
). “
Limitations of diffraction correction techniques in the estimation of acoustic attenuation in biological media
,”
J. Acoust. Soc. Am.
92
,
2377
.
20.
Gerdes
,
K.
, and
Ihlenburg
,
F.
(
1999
). “
On the pollution effect in FE solutions of the 3D-Helmholtz equation
,”
Comput. Methods Appl. Mech. Eng.
170
,
155
172
.
21.
Harris
,
G. R.
(
1981
). “
Review of transient field-theory for a baffled planar piston
,”
J. Acoust. Soc. Am.
70
,
10
20
.
22.
Khimunin
,
A. S.
(
1972
). “
Numerical calculation of diffraction corrections for precise measurement of ultrasound absorption
,”
Acustica
27
,
173
181
.
23.
Khimunin
,
A. S.
(
1975
). “
Numerical calculation of diffraction corrections for precise measurement of ultrasound phase velocity
,”
Acustica
32
,
192
200
.
24.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
(
2000
).
Fundamentals of Acoustics
(
Wiley
,
New York
).
25.
Knappskog
,
V.
(
2007
). “
Radiellmode svingninger i piezoelektriske ultralydstransdusere for luft. Målinger og endelig-element analyser” (“Radial mode vibrations in piezoelectric ultrasound transducers for air: Measurements and finite element analyses”)
, Master's thesis,
University of Bergen
,
Bergen, Norway
.
26.
Kocbach
,
J.
,
Lunde
,
P.
, and
Vestrheim
,
M.
(
2001
). “
Resonance frequency spectra with convergence tests of piezoceramic disks using the finite element method
,”
Acta Acust. united Acust.
87
,
271
285
.
27.
Lerch
,
R.
,
Landes
,
H.
, and
Kaarman
,
H. T.
(
1994
). “
Finite element modeling of the pulse-echo behavior of ultrasound transducers
,” in
Proceedings of the 1994 IEEE International Ultrasonics Symposium
, November 1–4, Cannes, France (
IEEE
,
New York
), pp.
1021
1025
.
28.
Lunde
,
P.
,
Frøysa
,
K.-E.
,
Kippersund
,
R.
, and
Vestrheim
,
M.
(
2003
). “
Transient diffraction effects in ultrasonic meters for volumetric, mass and energy flow measurement of natural gas
,” in
Proceedings of the 21st International North Sea Flow Measurement Workshop
, October 28–31,
Tønsberg, Norway
(NFOGM, Oslo, Norway), pp.
1
26
.
29.
Marburg
,
S.
(
2018
). “
A pollution effect in the boundary element method for acoustic problems
,”
J. Theor. Comp. Acoust.
26
,
1850018
.
30.
MathWorks Inc.
(
2021
). “
Lowpass command, MATLAB® R2021a
,” https://se.mathworks.com/help/releases/R2021a/signal/ref/lowpass.html (Last viewed December 22, 2022).
31.
Mosland
,
E. N.
,
Kocbach
,
J.
, and
Lunde
,
P.
(
2023a
). “
Near-field diffraction and reception effects in finite element modeling of ultrasound measurement systems for gas: Comparison to measurements in air
,” in
Proceedings of the 2023 IEEE International Ultrasonics Symposium
, September 3–8, Montreal, Canada (
IEEE
,
New York
).
32.
Mosland
,
E. N.
,
Kocbach
,
J.
,
Storheim
,
E.
, and
Lunde
,
P.
(
2022
). “
Radiation in air from a piezoelectric ceramic disk in radial mode vibration. Contributions from front, side and rear surfaces
,” in
Proceedings of the 45th Scandinavian Symposium on Physical Acoustics
, January 31–February 1 (NFS, Oslo, Norway), Online.
33.
Mosland
,
E. N.
,
Lunde
,
P.
, and
Kocbach
,
J.
(
2023b
). “
Using spectrum-of-spectrum (SoS) filtering to extract direct and multipath arrivals from a frequency domain simulation: Comparison with cepstrum and time-gating methods
,” in
Proceedings of the 46th Scandinavian Symposium on Physical Acoustics
, January 30–February 1, 2023,
Geilo, Norway
(NFS, Oslo, Norway).
34.
Ngaha
,
D. T.
, and
Frøysa
,
K. E.
(
2023
). “
Parabolic equation simulation of diffraction effects in a sound beam propagating through a flowing fluid
,”
J. Acoust. Soc. Am.
153
,
A327
.
35.
Norli
,
P.
(
2007
). “
Sound velocity cell for gas characterization
,” Ph.D. dissertation,
University of Bergen
,
Bergen, Norway
.
36.
Norli
,
P.
, and
Lunde
,
P.
(
2006
). “
A three-way pulse method for a precision sound velocity measurement cell
,” in
Proceedings of the 2006 IEEE International Ultrasonics Symposium
, October 2–6, Vancouver, Canada (
IEEE
,
New York
), pp.
888
893
.
37.
Øyerhamn
,
R.
,
Mosland
,
E. N.
,
Storheim
,
E.
,
Lunde
,
P.
, and
Vestrheim
,
M.
(
2018
). “
Finite element modeling of ultrasound measurement systems for gas. Comparison with experiments in air
,”
J. Acoust. Soc. Am.
144
,
2613
2625
.
38.
Papadakis
,
E. P.
(
1966
). “
Ultrasonic diffraction loss and phase change in anisotropic materials
,”
J. Acoust. Soc. Am.
40
,
863
876
.
39.
Petculescu
,
A.
, and
Lueptow
,
R. M.
(
2012
). “
Quantitative acoustic relaxational spectroscopy for real-time monitoring of natural gas: A perspective on its potential
,”
Sens. Actuators B: Chem.
169
,
121
127
.
40.
Rhyne
,
T. L.
(
1977
). “
Radiation coupling of a disk to a plane and back or a disk to disk—Exact solution
,”
J. Acoust. Soc. Am.
61
,
318
324
.
41.
Rich
,
K. T.
,
Holland
,
C. K.
,
Rao
,
M. B.
, and
Mast
,
T. D.
(
2018
). “
Characterization of cavitation-radiated acoustic power using diffraction correction
,”
J. Acoust. Soc. Am.
144
,
3563
3574
.
42.
Seki
,
H.
,
Granato
,
A.
, and
Truell
,
R.
(
1956
). “
Diffraction effects in the ultrasonic field of a piston source and their importance in the accurate measurement of attenuation
,”
J. Acoust. Soc. Am.
28
,
230
238
.
43.
SICK AG
(
2022
). “
Product information: FLOWSIC600
,” https://cdn.sick.com/media/docs/0/60/360/product_information_flowsic600_gas_flow_meter_en_im0011360.pdf (Last viewed May 5, 2023).
44.
Storheim
,
E.
(
2015
). “
Diffraction effects in the ultrasonic field of transmitting and receiving circular piezoceramic disks in radial mode vibration
,” Ph.D. dissertation,
University of Bergen
,
Bergen, Norway
.
45.
Storheim
,
E.
,
Lunde
,
P.
, and
Vestrheim
,
M.
(
2011
). “
Diffraction correction in ultrasonic fields for measurements of sound velocity in gas: Conventional and alternative methods
,” in
Proceedings of the 34th Scandinavian Symposium on Physical Acoustics
, January 30–February 2,
Geilo, Norway
(NFS, Oslo, Norway), pp.
1
27
.
46.
Svilainis
,
L.
,
Chaziachmetovas
,
A.
,
Kaskonas
,
P.
, and
Alvarez-Arenas
,
T. E. G.
(
2023
). “
Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity
,”
Ultrasonics
133
,
107025
.
47.
Trusler
,
J. P. M.
(
1991
).
Physical Acoustics and Metrology of Fluids
(
CRC
,
Boca Raton, FL
), pp.
90
-
115
, 227–228.
48.
Vatankhah
,
E.
,
Meng
,
Y.
,
Liu
,
Z.
,
Niu
,
X.
, and
Hall
,
N. A.
(
2023
). “
Characterization of high intensity progressive ultrasound beams in air at 300 kHz
,”
J. Acoust. Soc. Am.
153
,
2878
2886
.
49.
Wang
,
S.
(
2017
). “
Measurement of gas composition using ultrasonic sensors
,” Ph.D. dissertation,
Imperial College London, London, UK
.
50.
Williams
,
A. O.
(
1951
). “
The piston source at high frequencies
,”
J. Acoust. Soc. Am.
23
,
1
6
.
51.
Xing
,
G.
,
Yang
,
P.
, and
He
,
L.
(
2013
). “
Estimation of diffraction effect in ultrasonic attenuation by through-transmission substitution technique
,”
Ultrasonics
53
,
825
830
.
52.
Yamada
,
K.
, and
Fujii
,
Y.
(
1966
). “
Acoustic response of circular receiver to a circular source of different radius
,”
J. Acoust. Soc. Am.
40
,
1193
1194
.
53.
Yao
,
L.
,
Li
,
Y.
, and
Li
,
L.
(
2016
). “
Dispersion error reduction for acoustic problems using the smoothed finite element method (SFEM)
,”
Int. J. Numer. Methods Fluids
80
,
343
357
.
54.
Zhang
,
X.
,
Wang
,
S.
, and
Zhu
,
M.
(
2020
). “
Locating the inflection point of frequency-dependent velocity dispersion by acoustic relaxation to identify gas mixtures
,”
Meas. Sci. Technol.
31
,
115001
.
You do not currently have access to this content.