In this paper, the authors propose a similitude method based on the Π-theorem to predict the noise generated by pressure fluctuations along the boundary layer of a full-scale model by using a small-scale model. We begin by investigating the theory of the similitude method and introducing an approach to control the flow regime. We also provide an account of active and passive methods of controlling the flow regime. We analyze a plate model and a rotary model by using the computational fluid dynamics method to validate the effectiveness of the proposed similitude method and subject it to error analysis. The results demonstrate that it can accurately predict flow-induced noise in the full-scale model based on the noise observed in the small-scale model. We also provide methods to identify transitions in flow in the Appendix.

1.
J. C.
Gibbings
, “
On boundary-layer transition wires
,”
Report No. 462
(
University of Liverpool
,
Liverpool, UK
,
1959
).
2.
A. L.
Braslow
and
E. C.
Knox
, “
Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5
,”
NACA TN Report No. 4363
(
NASA
,
Washington, DC
,
1958
).
3.
K.
Rengasamy
and
A. C.
Mandal
, “
Experiments on effective tripping device in a zero pressure gradient turbulent boundary layer
,”
J. Phys: Conf. Ser.
822
,
012016
(
2017
).
4.
P.
Schlatter
and
R.
Örlü
, “
Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects
,”
J. Fluid Mech.
710
,
5
34
(
2012
).
5.
J. Q.
Xu
,
Z. Y.
Mei
, and
Z. H.
Liu
, “
Experimental study on wall pressure fluctuation characteristic of boundary layer artificial transition
,”
J. Harbin Eng. Univ.
41
,
627
634
(
2020
).
6.
A.
Caiazzo
and
W.
Desmet
, “
A generalized Corcos model for modelling turbulent boundary layer wall pressure fluctuations
,”
J. Sound Vib.
372
,
192
210
(
2016
).
7.
P. D.
Lysak
,
K. B.
William
, and
B. F.
John
, “
Low wavenumber models for turbulent boundary layer excitation of structures
,” in
Flinovia—Flow Induced Noise and Vibration Issues and Aspects—II: A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response 2
(
Springer International Publishing
,
Cham
,
2019
).
8.
Y. F.
Hwang
,
K. B.
William
, and
A. H.
Stephen
, “
Comparison of semiempirical models for turbulent boundary layer wall pressure spectra
,”
J. Sound Vib.
319
,
199
217
(
2009
).
9.
M. R.
Catlett
,
J. M.
Anderson
,
J. B.
Forest
, and
D. O.
Stewart
, “
Empirical modeling of pressure spectra in adverse pressure gradient turbulent boundary layers
,”
AIAA J.
54
,
569
587
(
2016
).
10.
M. J.
Moeller
,
S. M.
Teresa
, and
G. D.
Richard
, “
Effect of developing pressure gradients on TBL wall pressure spectrums
,” in
Flinovia—Flow Induced Noise and Vibration Issues and Aspects: A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response
(
Springer International Publishing
,
Cham
,
2014
), pp.
47
65
.
11.
L.
Duan
,
M. M.
Choudhari
, and
C.
Zhang
, “
Pressure fluctuations induced by a hypersonic turbulent boundary layer
,”
J. Fluid Mech.
804
,
578
607
(
2016
).
12.
S.
De Rosa
and
F.
Franco
, “
Exact and numerical responses of a plate under a turbulent boundary layer excitation
,”
J. Fluids Struct.
24
,
212
230
(
2008
).
13.
S. A.
Hambric
,
Y. F.
Hwang
, and
W. K.
Bonness
, “
Vibrations of plates with clamped and free edges excited by low-speed turbulent boundary layer flow
,”
J. Fluids Struct.
19
,
93
110
(
2004
).
14.
F.
Franco
,
S.
De Rosa
, and
E.
Ciappi
, “
Numerical approximations on the predictive responses of plates under stochastic and convective loads
,”
J. Fluids Struct.
42
,
296
312
(
2013
).
15.
M.
Karimi
,
P.
Croaker
,
L.
Maxit
,
O.
Robin
,
A.
Skvortsov
,
S.
Marburg
, and
N.
Kessissoglou
, “
A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer
,”
J. Fluids Struct.
92
,
102814
(
2020
).
16.
P.
Croaker
,
J.
Venning
,
M.
Karimi
,
P.
Brandner
,
C.
Doolan
, and
N.
Kessissoglou
, “
Flow generated noise produced by a blunt edged plate in a water tunnel
,” in
Flinovia—Flow Induced Noise and Vibration Issues and Aspects—II
(
Springer International Publishing
,
Cham
,
2019
).
17.
P. R.
Donavan
and
K. B.
Wlliam
, “
Measurement, prediction, and reduction of high-frequency aerodynamic noise generated and radiated from surfaces of various textures
,” in
Flinovia—Flow Induced Noise and Vibration Issues and Aspects—II: A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response 2
(
Springer International Publishing
,
Cham
,
2019
).
18.
H. D.
Yuan
,
Z.
Yang
,
Y.
Wang
,
Y.
Fan
, and
Y.
Fang
, “
Experimental analysis of hydrodynamic and acoustic pressure on automotive front side window
,”
J. Sound Vib.
476
,
115296
(
2020
).
19.
S. J.
Elliott
,
C.
Maury
, and
P.
Gardonio
, “
The synthesis of spatially correlated random pressure fields
,”
J. Acoust. Soc. Am.
117
,
1186
1201
(
2005
).
20.
M.
Aucejo
,
L.
Maxit
, and
J. L.
Guyader
, “
Source scanning technique for simulating TBL-induced vibrations measurements
,” in
Flinovia—Flow Induced Noise and Vibration Issues and Aspects: A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response
(
Springer International Publishing
,
Cham
,
2014
), pp.
121
149
.
21.
A.
Casaburo
,
G.
Petrone
,
F.
Franco
, and
S. D.
Rosa
, “
A review of similitude methods for structural engineering
,”
Appl. Mech. Rev.
71
,
030802
(
2019
).
22.
Y. P.
Zhu
,
Y.
Wang
,
Z.
Luo
,
Q.
Han
, and
D.
Wang
, “
Similitude design for the vibration problems of plates and shells: A review
,”
Front. Mech. Eng.
12
,
253
264
(
2017
).
23.
L.
Rayleigh
The principle of similitude
,”
Nature
95
,
202
203
(
1915
).
24.
E.
Ciappi
,
F.
Magiones
,
S.
De Rosa
, and
F.
Franco
, “
Analysis of the scaling laws for the turbulence driven panel responses
,”
J. Fluids Struct.
32
,
90
103
(
2012
).
25.
B.
Fang
,
Z. M.
Jin
, and
H. Q.
Li
, “
Theoretical research and experimental verification on vibration and acoustic similarity of stiffened cylindrical shells
,” in
Proceedings of the 7th International Conference on Energy and Environmental Protection (ICEEP 2018)
, Shenzhen, China (July 14–15,
2018
).
26.
S. G.
Kumbhar
and
R. G.
Desavale
, “
Theoretical and experimental studies to predict vibration responses of defects in spherical roller bearings using dimension theory
,”
Measurement
161
,
107846
(
2020
).
27.
I. P. G. S.
Rahtika
,
I. N. G.
Wardana
,
A. A.
Sonief
, and
E.
Siswanto
, “
Experimental investigation on flutter similitude of thin-flat plates
,”
Adv. Acoust. Vib.
2017
,
7091425
(
2017
).
28.
C.
Adams
,
J.
Bös
,
E. M.
Slomski
, and
T.
Melz
, “
Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures
,”
Mech. Syst. Signal Process.
110
,
590
610
(
2018
).
29.
J. J.
Wu
, “
The complete-similitude scale models for predicting the vibration characteristics of the elastically restrained flat plates subjected to dynamic loads
,”
J. Sound Vib.
268
,
1041
1053
(
2003
).
30.
J. J.
Wu
, “
Prediction of the dynamic characteristics of an elastically supported full-size flat plate from those of its complete-similitude scale model
,”
Comput. Struct.
84
,
102
114
(
2006
).
31.
W.
Soedel
, “
Similitude approximations for vibrating thin shells
,”
J. Acoust. Soc. Am.
49
,
1535
1541
(
1971
).
32.
P.
Singhatanadgid
and
N. S.
Anawat
, “
An experimental investigation into the use of scaling laws for predicting vibration responses of rectangular thin plates
,”
J. Sound Vib.
311
,
314
327
(
2008
).
33.
C. P.
Zhang
,
J.
Wei
,
S.
Hou
, and
J.
Zhang
, “
Scaling law of gear transmission system obtained from dynamic equation and finite element method
,”
Mech. Mach. Theor.
159
,
104285
(
2021
).
34.
V.
Ungbhakorn
and
P.
Singhatanadgid
, “
Similitude and physical modeling for buckling and vibration of symmetric cross-ply laminated circular cylindrical shells
,”
J. Compos. Mater.
37
,
1697
1712
(
2003
).
35.
L. L.
Zhou
, “
Similitude analysis of free vibration of functionally graded material cylinders under thermal environment
,”
Mech. Syst. Signal Proc.
170
,
108821
(
2022
).
36.
G.
Petrone
,
M.
Manfredonia
,
S.
De Rosa
, and
F.
Franco
, “
Structural similitudes of stiffened cylinders
,”
Math. Mech. Solids
24
,
527
541
(
2019
).
37.
K.
Davey
,
R.
Darvizeh
,
A.
Golbaf
, and
H.
Sadeghi
, “
The breaking of geometric similarity
,”
Int. J. Mech. Sci.
187
,
105925
(
2020
).
38.
K.
Davey
,
H.
Sadeghi
,
C.
Adams
, and
R.
Darvizeh
, “
Anisotropic scaling for thin-walled vibrating structures
,”
J. Sound Vib.
537
,
117182
(
2022
).
39.
S.
De Rosa
and
F.
Franco
, “
On the use of the asymptotic scaled modal analysis for time-harmonic structural analysis and for the prediction of coupling loss factors for similar systems
,”
Mech. Syst. Signal Process.
24
,
455
480
(
2010
).
40.
S.
De Rosa
,
F.
Franco
,
X.
Li
, and
T.
Polito
, “
A similitude for structural acoustic enclosures
,”
Mech. Syst. Signal Process.
30
,
330
342
(
2012
).
41.
V.
Meruane
,
S.
De Rosa
, and
F.
Franco
, “
Numerical and experimental results for the frequency response of plates in similitude
,”
Proc. Inst. Mech. Eng. C
230
,
3212
3221
(
2016
).
42.
F.
Franco
,
O.
Robin
,
E.
Ciappi
,
S.
De Rosa
,
A.
Berry
, and
G.
Petrone
, “
Similitude laws for the structural response of flat plates under a turbulent boundary layer excitation
,”
Mech. Syst. Signal Process.
129
,
590
613
(
2019
).
43.
U.
Cho
,
L. W.
Kristin
, and
H. C.
Richard
, “
Online functional testing with rapid prototypes: A novel empirical similarity method
,”
Rapid Prototyp. J.
4
,
128
138
(
1998
).
44.
M.
Alves
and
R. E.
Oshiro
, “
Scaling impacted structures when the prototype and the model are made of different materials
,”
Int. J. Solids Struct.
43
,
2744
2760
(
2006
).
45.
R. E.
Oshiro
and
M.
Alves
, “
Predicting the behaviour of structures under impact loads using geometrically distorted scaled models
,”
J. Mech. Phys. Solids
60
,
1330
1349
(
2012
).
46.
Z.
Luo
,
Y.
Wang
,
Y.
Zhu
,
X.
Zhao
, and
D.
Wang
, “
The similitude design method of thin-walled annular plates and determination of structural size intervals
,”
Proc. Inst. Mech. Eng. C
230
,
2158
2168
(
2016
).
47.
A.
Berry
,
O.
Robin
,
F.
Franco
,
P.
De Rosa
, and
G.
Petrone
, “
Similitude laws for the sound radiation of flat orthotropic flexural panels
,”
J. Sound Vib.
489
,
115636
(
2020
).
48.
L.
Russo
,
M.
Sorrentino
,
P.
Polverino
, and
C.
Pianese
, “
Application of Buckingham π theorem for scaling-up oriented fast modelling of proton exchange membrane fuel cell impedance
,”
J. Power Sources
353
,
277
286
(
2017
).
49.
M. S.
Yu
,
Y. X.
Wu
, and
S. J.
Lv
, “
Acoustic similarity test of ribbed cylindrical shell
,”
Ship Build. China
43
,
50
57
(
2002
).
50.
C.
Adams
,
B.
Joachim
, and
M.
Tobias
, “
Assessing the similitude of vibrating plates
,” in
Proceedings of the 23rd International Conference on Acoustics
, Aachen, Germany (September 9–13,
2019
).
51.
H.
Schlichting
,
Boundary Layer Theory
(
Science Press
,
Beijing, China
,
1991
), p.
573
.
52.
R.
Jordinson
, “
Transition from laminar to turbulent flow over a flat plate: Space amplified, numerical solutions of the Orr-Sommerfeld equation
,” Ph.D. thesis,
Edinburgh University
,
Edinburgh, UK
(
1968
).
53.
H.
Schlichting
,
Boundary Layer Theory
,
9th ed.
(
Springer-Verlag
,
Berlin, Heidelberg
,
2017
), p.
452
.
54.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
55.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
56.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,” in
Proceedings of the Summer Program 1990
, Stanford, CA (
1990
).
57.
B. M.
Abraham
and
L. K.
William
, “
Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra
,”
J. Fluids Eng.
120
,
29
39
(
1998
).
58.
R.
Narasimha
, “
The laminar-turbulent transition zone in the boundary layer
,”
Prog. Aerosp. Sci.
22
,
29
80
(
1985
).
59.
K.
Rogowski
,
G.
Królak
, and
G.
Bangga
, “
Numerical study on the aerodynamic characteristics of the NACA 0018 airfoil at low Reynolds number for Darrieus wind turbines using the transition SST model
,”
Processes
9
,
477
502
(
2021
).
60.
G. C.
Lauchle
, “
On the radiated noise due to boundary‐layer transition
,”
J. Acoust. Soc. Am.
67
,
158
168
(
1980
).
61.
C. J.
Gedney
and
P.
Leehey
, “
Wall pressure fluctuations during transition on a flat plate
,”
J. Vib. Acoust.
113
,
255
266
(
1991
).
62.
V. H.
Arakeri
, “
A note on the transition observations on an axisymmetric body and some related fluctuating wall pressure measurements
,”
J. Fluids Eng.
97
,
82
86
(
1975
).
63.
H. D.
Abarbanel
,
R. A.
Katz
,
T.
Galib
,
J.
Cembrola
, and
T. W.
Frison
, “
Nonlinear analysis of high Reynolds number flows over a buoyant axisymmetric body
,”
AIP Conf. Proc.
296
,
55
94
(
1994
).
64.
A. M.
Kuethe
and
C. Y.
Chow
,
Foundations of Aerodynamics: Bases of Aerodynamic Design
(
John Wiley & Sons
,
New York
,
1998
), pp.
156
160
.
65.
B.
Thwaites
, “
Approximate calculation of the laminar boundary layer
,”
Aeronaut. Q.
1
,
245
280
(
1949
).
66.
D.
G'erard
,
Two-Dimensional Boundary Layers
(
Von Karman Institute
,
Sint-Genesius-Rode, Belgium
,
2012
).
67.
J.
Moran
,
An Introduction to Theoretical and Computational Aerodynamics
(
John Wiley & Sons
,
New York
,
1984
).
68.
I.
Tani
, “
Boundary-layer transition
,”
Annu. Rev. Fluid Mech.
1
,
169
196
(
1969
).
You do not currently have access to this content.