Concentric circular microphone arrays have been used in a wide range of applications, such as teleconferencing systems and smarthome devices for speech signal acquisition. Such arrays are generally designed with omnidirectional sensors, and the associated beamformers are fully steerable but only in the sensors' plane. If operated in the three-dimensional space, the performance of those arrays would suffer from significant degradation if the sound sources are out of the sensors' plane, which happens due to the incomplete spatial sampling of the sound field. This paper addresses this issue by presenting a new method to design concentric circular microphone arrays using both omnidirectional microphones and bidirectional microphones (directional sensors with dipole-shaped patterns). Such arrays are referred to as superarrays as they are able to achieve higher array gain as compared to their traditional counterparts with omnidirectional sensors. It is shown that, with the use of bidirectional microphones, the spatial harmonic components that are missing in the traditional arrays are compensated back. A beamforming method is then presented to design beamformers that can achieve frequency-invariant beampatterns with high directivity and are fully steerable in the three-dimensional space. Simulations and real experiments validate the effectiveness and good properties of the presented method.

1.
Andrews
,
L. C.
(
1998
).
Special Functions of Mathematics for Engineers
(
SPIE
,
Bellingham, WA
).
2.
Bai
,
M. R.
, and
Lo
,
Y.-Y.
(
2013
). “
Refined acoustic modeling and analysis of shotgun microphones
,”
J. Acoust. Soc. Am.
133
(
4
),
2036
2045
.
3.
Bai
,
M. R.
,
Wang
,
C.
, and
Juan
,
S.-W.
(
2012
). “
Optimal two-layer directive microphone array with application in near-field acoustical holography
,”
J. Acoust. Soc. Am.
132
(
2
),
862
871
.
4.
Benesty
,
J.
,
Chen
,
J.
, and
Cohen
,
I.
(
2015
).
Design of Circular Differential Microphone Arrays
(
Springer-Verlag
,
Berlin
).
5.
Benesty
,
J.
,
Chen
,
J.
, and
Huang
,
Y.
(
2008
).
Microphone Array Signal Processing
(
Springer-Verlag
,
Berlin
).
6.
Benesty
,
J.
,
Chen
,
J.
, and
Pan
,
C.
(
2016
).
Fundamentals of Differential Beamforming
(
Springer-Verlag
,
Singapore
).
7.
Benesty
,
J.
,
Cohen
,
I.
, and
Chen
,
J.
(
2017
).
Fundamentals of Signal Enhancement and Array Signal Processing
(
Wiley
,
Singapore
).
8.
Benesty
,
J.
,
Huang
,
G.
,
Chen
,
J.
, and
Pan
,
N.
(
2023
).
Microphone Arrays
(
Springer-Verlag
,
Berlin
).
9.
Bernardini
,
A.
,
Antonacci
,
F.
, and
Sarti
,
A.
(
2018
). “
Wave digital implementation of robust first-order differential microphone arrays
,”
IEEE Signal Process. Lett.
25
(
2
),
253
257
.
10.
Borra
,
F.
,
Bernardini
,
A.
,
Antonacci
,
F.
, and
Sarti
,
A.
(
2020
). “
Efficient implementations of first-order steerable differential microphone arrays with arbitrary planar geometry
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
28
,
1755
1766
.
11.
Brandstein
,
M.
, and
Ward
,
D. B.
(
2001
).
Microphone Arrays: Signal Processing Techniques and Applications
(
Springer-Verlag
,
Berlin
).
12.
Chen
,
H.
,
Abhayapala
,
T. D.
, and
Zhang
,
W.
(
2015
). “
Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis
,”
J. Acoust. Soc. Am.
138
(
5
),
3081
3092
.
13.
Chen
,
J.
,
Benesty
,
J.
, and
Pan
,
C.
(
2014
). “
On the design and implementation of linear differential microphone arrays
,”
J. Acoust. Soc. Am.
136
(
6
),
3097
3113
.
14.
D'Spain
,
G. L.
,
Luby
,
J. C.
,
Wilson
,
G. R.
, and
Gramann
,
R. A.
(
2006
). “
Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection
,”
J. Acoust. Soc. Am.
120
(
1
),
171
185
.
15.
Elko
,
G. W.
(
2004
). “
Differential microphone arrays
,” in
Audio Signal Processing for Next-Generation Multimedia Communication Systems
, edited by
Y.
Huang
and
J.
Benesty
(
Springer-Verlag
,
Berlin
), pp.
11
65
.
16.
Elko
,
G. W.
, and
Meyer
,
J. M.
(
2008
). “
Microphone arrays
,” in
Springer Handbook of Speech Processing
, edited by
J.
Benesty
,
M. M.
Sondhi
, and
Y.
Huang
(
Springer-Verlag
,
Berlin
), pp.
1021
1041
.
17.
Fraden
,
J.
(
2016
).
Handbook of Modern Sensors
,
5th ed
. (
Springer
,
Cham, Switzerland
).
18.
Gur
,
B.
(
2014
). “
Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays
,”
J. Acoust. Soc. Am.
135
(
6
),
3463
3473
.
19.
Gur
,
B.
(
2017
). “
Modal beamforming for small circular arrays of particle velocity sensors
,” in
Proceedings of the 25th European Signal Processing Conference (EUSIPCO)
, August 28–September 2, Kos, Greece (
IEEE
,
New York
), pp.
390
394
.
20.
Hawkes
,
M.
, and
Nehorai
,
A.
(
1998
). “
Acoustic vector-sensor beamforming and Capon direction estimation
,”
IEEE Trans. Signal Process.
46
(
9
),
2291
2304
.
21.
Huang
,
G.
,
Benesty
,
J.
, and
Chen
,
J.
(
2017
). “
On the design of frequency-invariant beampatterns with uniform circular microphone arrays
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
25
(
5
),
1140
1153
.
22.
Huang
,
G.
,
Benesty
,
J.
, and
Chen
,
J.
(
2022
). “
Fundamental approaches to robust differential beamforming with high directivity factors
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
30
,
3074
3088
.
23.
Huang
,
G.
,
Chen
,
J.
, and
Benesty
,
J.
(
2018a
). “
A flexible high directivity beamformer with spherical microphone arrays
,”
J. Acoust. Soc. Am.
143
(
5
),
3024
3035
.
24.
Huang
,
G.
,
Chen
,
J.
, and
Benesty
,
J.
(
2018b
). “
Insights into frequency-invariant beamforming with concentric circular microphone arrays
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
26
(
12
),
2305
2318
.
25.
Huang
,
G.
,
Wang
,
Y.
,
Benesty
,
J.
,
Cohen
,
I.
, and
Chen
,
J.
(
2021
). “
Combined differential beamforming with uniform linear microphone arrays
,” in
Proceedings of ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, June 6–11, Toronto, Canada (
IEEE
,
New York
), pp.
781
785
.
26.
Jin
,
J.
,
Huang
,
G.
,
Wang
,
X.
,
Chen
,
J.
,
Benesty
,
J.
, and
Cohen
,
I.
(
2021
). “
Steering study of linear differential microphone arrays
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
29
,
158
170
.
27.
Lai
,
C. C.
,
Nordholm
,
S. E.
, and
Leung
,
Y. H.
(
2013
). “
Design of steerable spherical broadband beamformers with flexible sensor configurations
,”
IEEE Trans. Audio Speech Lang. Process.
21
(
2
),
427
438
.
28.
Luo
,
X.
,
Huang
,
G.
,
Jin
,
J.
,
Chen
,
J.
,
Benesty
,
J.
,
Zhang
,
W.
,
Zhu
,
M.
, and
Li
,
C.
(
2023a
). “
Design of maximum directivity beamformers with linear acoustic vector sensor arrays
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
31
,
1421
1435
.
29.
Luo
,
X.
,
Jin
,
J.
,
Huang
,
G.
,
Chen
,
J.
, and
Benesty
,
J.
(
2023b
). “
Design of steerable linear differential microphone arrays with omnidirectional and bidirectional sensors
,”
IEEE Signal Process. Lett.
30
,
463
467
.
30.
Luo
,
X.
,
Jin
,
J.
,
Huang
,
G.
,
Chen
,
J.
,
Benesty
,
J.
,
Cohen
,
I.
, and
Zhang
,
W.
(
2021
). “
Constrained maximum directivity beamformers based on uniform linear acoustic vector sensor arrays
,” in
Proceedings of the 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
, December 14–17, Tokyo, Japan (
IEEE
,
New York
).
31.
Ma
,
F.
,
Abhayapala
,
T. D.
, and
Zhang
,
W.
(
2021
). “
Multiple circular arrays of vector sensors for real-time sound field analysis
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
29
,
286
299
.
32.
Meyer
,
J. M.
, and
Elko
,
G. W.
(
2008
). “
Spherical harmonic modal beamforming for an augmented circular microphone array
,” in
Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing
, March 31–April 4, Las Vegas, NV (
IEEE
,
New York
), pp.
5280
5283
.
33.
Nehorai
,
A.
, and
Paldi
,
E.
(
1994
). “
Acoustic vector-sensor array processing
,”
IEEE Trans. Signal Process.
42
(
9
),
2481
2491
.
34.
Olson
,
H. F.
(
1946
). “
Gradient microphones
,”
J. Acoust. Soc. Am.
17
(
3
),
192
198
.
35.
Rafaely
,
B.
(
2015
).
Fundamentals of Spherical Array Processing
(
Springer-Verlag
,
Berlin
).
36.
Teutsch
,
H.
, and
Kellermann
,
W.
(
2006
). “
Acoustic source detection and localization based on wavefield decomposition using circular microphone arrays
,”
J. Acoust. Soc. Am.
120
(
5
),
2724
2736
.
37.
Thompson
,
S. C.
(
2003
). “
Tutorial on microphone technologies for directional hearing aids
,”
Hear. J.
56
(
11
),
14
16
.
38.
Van Trees
,
H. L.
(
2002
).
Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory
(
Wiley
,
New York
).
39.
Watanabe
,
K.
,
Kurihara
,
Y.
,
Watanabe
,
K.
,
Azami
,
T.
,
Nukaya
,
S.
, and
Tanaka
,
H.
(
2014
). “
Biosignals sensing by novel use of bidirectional microphones in a mobile phone for ubiquitous healthcare monitoring
,”
IEEE Trans. Hum. Mach. Syst.
44
(
4
),
545
550
.
40.
Williams
,
E. G.
(
1999
).
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Academic
,
San Diego, CA
).
41.
Yan
,
S.
(
2015
). “
Optimal design of modal beamformers for circular arrays
,”
J. Acoust. Soc. Am.
138
(
4
),
2140
2151
.
42.
Yan
,
S.
,
Sun
,
H.
,
Ma
,
X.
,
Svensson
,
U. P.
, and
Hou
,
C.
(
2011a
). “
Time-domain implementation of broadband beamformer in spherical harmonics domain
,”
IEEE Trans. Audio Speech Lang. Process.
19
(
5
),
1221
1230
.
43.
Yan
,
S.
,
Sun
,
H.
,
Svensson
,
U. P.
,
Ma
,
X.
, and
Hovem
,
J. M.
(
2011b
). “
Optimal modal beamforming for spherical microphone arrays
,”
IEEE Trans. Audio Speech Lang. Process.
19
(
2
),
361
371
.
44.
Zhao
,
X.
,
Huang
,
G.
,
Chen
,
J.
, and
Benesty
,
J.
(
2020
). “
An improved solution to the frequency-invariant beamforming with concentric circular microphone arrays
,” in
Proceedings of ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Barcelona, Spain (
IEEE
,
New York
), pp.
556
560
.
45.
Zhao
,
X.
,
Huang
,
G.
,
Chen
,
J.
, and
Benesty
,
J.
(
2021
). “
On the design of 3D steerable beamformers with uniform concentric circular microphone arrays
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
29
,
2764
2778
.
46.
Zou
,
N.
, and
Nehorai
,
A.
(
2009
). “
Circular acoustic vector-sensor array for mode beamforming
,”
IEEE Trans. Signal Process.
57
(
8
),
3041
3052
.
You do not currently have access to this content.