A two-month-long glider deployment in the Gulf of St. Lawrence, Canada, measured the ambient sound level variability with depth and lateral position across a narrow channel that serves as an active commercial shipping corridor. The Honguedo Strait between the Gaspé Peninsula and Anticosti Island has a characteristic sound channel during the Summer and Fall due to temperature variation with depth. The experiment comprised continuous acoustic measurements in the band 1–1000 Hz and oceanographic (temperature and salinity) measurements from a profiling electric glider down to 210 m water depth. The mean observed ambient sound depth-profile was modeled by placing a uniform distribution of sources near the surface to represent a homogeneous wind-generated ocean wave field and computing the acoustic field using normal modes. The measurements and predictions match within the observed error bars and indicate a minimum in the sound channel at 70 m depth and a relative increase by ∼1 dB down to 180 m depth for frequencies >100 Hz. The impact of detector depth, the distance to a busy shipping corridor, wind noise, flow noise, and self-noise are discussed in the context of passive acoustic monitoring and marine mammal detection.

You do not currently have access to this content.