The seat-dip effect (SDE) occurs when low-frequency sounds propagate through the seating area of a performance space. The physical aspects governing the effect still puzzle acousticians mostly due to the large variety of seating configurations. In this study, the SDE is investigated in three parameterized hall models using the finite-difference time-domain method to simulate a large number of seat configurations in order to quantify the contribution of different geometric properties related to the seating area. The results show that the step size defining the inclination angle of the seating area and the opening underneath the seats (or underpass) are significant factors contributing to the SDE, whereas the stage height and the source position are found to be less important. The results also demonstrate that with an underpass greater than the step size, the first frequency dip occurring between 80 and 100 Hz is mitigated regardless of the hall type considered. The phenomenon is also found to be predominant in the early part of the room response. Visualizations of spatial and time-frequency evolution in the halls are also provided for the cases where the seat properties are found to visibly affect the magnitude spectrum.

1.
Ando
,
Y.
,
Takaishi
,
M.
, and
Tada
,
K.
(
1982
). “
Calculations of the sound transmission over theater seats and methods for its improvement in the low-frequency range
,”
J. Acoust. Soc. Am.
72
(
2
),
443
448
.
2.
Bradley
,
J. S.
(
1991
). “
Some further investigations of the seat dip effect
,”
J. Acoust. Soc. Am.
90
(
1
),
324
333
.
3.
Davies
,
W.
(
1992
). “
The effects of seating on the acoustics of auditoria
,” Ph.D. thesis,
University of Salford
,
Salford, UK
.
4.
Davies
,
W.
, and
Cox
,
T.
(
2000
). “
Reducing seat dip attenuation
,”
J. Acoust. Soc. Am.
108
(
5
),
2211
2218
.
5.
Efron
,
B.
(
1987
). “
Better bootstrap confidence intervals
,”
J. Am. Stat. Assoc.
82
(
397
),
171
185
.
6.
Fratoni
,
G.
,
Hamilton
,
B.
, and
D'Orazio
,
D.
(
2022
). “
Feasibility of a finite-difference time-domain model in large-scale acoustic simulations
,”
J. Acoust. Soc. Am.
152
(
1
),
330
341
.
7.
Ishida
,
K.
(
1993
). “
The measurement and prediction of sound transmission over auditorium seats
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
8.
Ishida
,
K.
(
1995
). “
Investigation of the fundamental mechanism of the seat-dip effect using measurements on a parallel barrier scale-model
,”
J. Acoust. Soc. Jpn. (E)
16
(
2
),
105
114
.
9.
Kawai
,
Y.
, and
Terai
,
T.
(
1991
). “
Calculation of sound fields over audience seats by using integral equation method
,”
J. Vib. Acoust.
113
(
1
),
22
27
.
10.
Kowalczyk
,
K.
, and
van Walstijn
,
M.
(
2011
). “
Room acoustics simulation using 3-D compact explicit FDTD schemes
,”
IEEE Trans. Audio. Speech. Lang. Process.
19
(
1
),
34
46
.
11.
Lokki
,
T.
,
Southern
,
A.
, and
Savioja
,
L.
(
2011
). “
Studies on seat dip effect with 3D FDTD modeling
,” in
Proceedings of Forum Acusticum
, Aalborg, Denmark, pp.
1553
1558
.
12.
Lokki
,
T.
,
Southern
,
A.
,
Siltanen
,
S.
, and
Savioja
,
L.
(
2013
). “
Acoustics of epidaurus—Studies with room acoustics modelling methods
,”
Acta Acust. united Acust.
99
(
1
),
40
47
.
13.
LoVetri
,
J.
,
Mardare
,
D.
, and
Soulodre
,
G.
(
1996
). “
Modeling of the seat dip effect using the finite-difference time-domain method
,”
J. Acoust. Soc. Am.
100
(
4
),
2204
2212
.
14.
Meyer
,
J.
,
Prepeliţă
,
S.
,
Khajeh-Saeed
,
A.
,
Smirnov
,
M.
, and
Hoffmann
,
P.
(
2023
). “
Verification on head-related transfer functions of a snowman model simulated using the finite-difference time-domain method
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
31
,
2579
2591
.
15.
Meyer
,
J.
,
Smirnov
,
M.
,
Khajeh-Saeed
,
A.
,
Hoffmann
,
P. F.
, and
Prepeliţă
,
S. T.
(
2022
). “
Finite-difference time-domain simulations: Verification on head-related transfer functions of a rigid sphere model
,”
JASA Express Lett.
2
(
6
),
062401
.
16.
Min
,
H.
, and
Liao
,
Y.
(
2021
). “
Mechanism analysis of the influence of seat attributes on the seat dip effect in music halls
,”
Appl. Sci.
11
(
20
),
9768
.
17.
Mommertz
,
E.
(
1993
). “
Attenuation of sound passing over audience at grazing incidence
,”
J. Acoust. Soc. Am.
93
(
4
),
2303
.
18.
Montgomery
,
D. C.
(
2001
).
Design and Analysis of Experiments
,
5th ed
. (
Wiley
,
New York
).
19.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
(
2010
).
Verification and Validation in Scientific Computing
(
Cambridge University Press
,
Cambridge
, UK).
20.
Osa
,
T.
,
Murakami
,
K.
,
Horinouchi
,
Y.
, and
Takahashi
,
D.
(
2007
). “
Application of audience-seats characteristics to the sound field analysis for large enclosures
,”
Appl. Acoust.
68
,
939
952
.
21.
Pätynen
,
J.
,
Tervo
,
S.
, and
Lokki
,
T.
(
2013
). “
Analysis of concert hall acoustics via visualizations of time-frequency and spatiotemporal responses
,”
J. Acoust. Soc. Am.
133
(
2
),
842
857
.
22.
Prepeliţă
,
S. T.
,
Gómez Bolaños
,
J.
,
Geronazzo
,
M.
,
Mehra
,
R.
, and
Savioja
,
L.
(
2019
). “
Pinna-related transfer functions and lossless wave equation using finite-difference methods: Verification and asymptotic solution
,”
J. Acoust. Soc. Am.
146
(
5
),
3629
3645
.
23.
Roache
,
P. J.
(
1998
).
Verification and Validation in Computational Science and Engineering
(
Hermosa
,
Albuquerque, NM
), Vol.
895
.
24.
Saarelma
,
J.
, and
Savioja
,
L.
(
2014
). “
An open source finite-difference time-domain solver for room acoustics using graphics processing units
,” in
Proceedings of Forum Acusticum
, Krakow, Poland, p.
SS11.8
.
25.
Saarelma
,
J.
, and
Savioja
,
L.
(
2019
). “
Spatial analysis of modal time evolution in room acoustics
,”
J. Acoust. Soc. Am.
145
(
1
),
EL116
EL121
.
26.
Sakurai
,
Y.
,
Morimoto
,
H.
, and
Ishida
,
K.
(
1993
). “
The reflection of sound at grazing angles by auditorium seats
,”
Appl. Acoust.
39
(
3
),
209
227
.
27.
Schultz
,
T. J.
, and
Watters
,
B.
(
1964
). “
Propagation of sound across audience seating
,”
J. Acoust. Soc. Am.
36
(
5
),
885
896
.
28.
Sessler
,
G.
, and
West
,
J.
(
1964
). “
Sound transmission over theatre seats
,”
J. Acoust. Soc. Am.
36
(
9
),
1725
1732
.
29.
Tahvanainen
,
H.
(
2021
). “
Analysis and perception of the seat-dip effect in concert halls
,” Ph.D. thesis,
Aalto University
,
Espoo, Finland
.
30.
Tahvanainen
,
H.
,
Haapaniemi
,
A.
, and
Lokki
,
T.
(
2017
). “
Perceptual significance of seat-dip effect related direct sound coloration in concert halls
,”
J. Acoust. Soc. Am.
141
(
3
),
1560
1570
.
31.
Tahvanainen
,
H.
, and
Lokki
,
T.
(
2018
). “
About the seat-dip effect in the presence of audience
,” in
Proceedings of the International Congress of Sound and Vibration
, Hiroshima, Japan.
32.
Tahvanainen
,
H.
,
Lokki
,
T.
,
Jang
,
H.-S.
, and
Jeon
,
J.-Y.
(
2020
). “
Investigating the influence of seating area design and enclosure on the seat-dip effect using scale model measurements
,”
Acta Acust.
4
(
4
),
15
.
33.
Tahvanainen
,
H.
,
Pätynen
,
J.
, and
Lokki
,
T.
(
2015a
). “
Analysis of the seat-dip effect in twelve european concert halls
,”
Acta Acust. united Acust.
101
(
4
),
731
742
.
34.
Tahvanainen
,
H.
,
Pätynen
,
J.
, and
Lokki
,
T.
(
2015b
). “
Studies on the perception of bass in four concert halls
,”
Psychomusicol.: Music Mind Brain
25
(
3
),
294
305
.
35.
Takahashi
,
D.
(
1997
). “
Seat dip effect: The phenomena and mechanism
,”
J. Acoust. Soc. Am.
102
(
3
),
1326
1334
.
36.
Twersky
,
V.
(
1957
). “
On scattering and reflection of sound by rough surfaces
,”
J. Acoust. Soc. Am.
29
(
2
),
209
225
.
37.
Webb
,
C.
, and
Bilbao
,
S.
(
2011
). “
Computing room acoustics with CUDA-3D FDTD schemes with boundary losses and viscosity
,” in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp.
317
320
.
38.
Witew
,
I. B.
,
Vorländer
,
M.
, and
Xiang
,
N.
(
2017
). “
Sampling the sound field in auditoria using large natural-scale array measurements
,”
J. Acoust. Soc. Am.
141
(
3
),
EL300
EL306
.

Supplementary Material

You do not currently have access to this content.