Analytical methods are fundamental in studying acoustics problems. One of the important tools is the Wiener-Hopf method, which can be used to solve many canonical problems with sharp transitions in boundary conditions on a plane/plate. However, there are some strict limitations to its use, usually the boundary conditions need to be imposed on parallel lines (after a suitable mapping). Such mappings exist for wedges with continuous boundaries, but for discrete boundaries, they have not yet been constructed. In our previous article, we have overcome this limitation and studied the diffraction of acoustic waves by a wedge consisting of point scatterers. Here, the problem is generalised to an arbitrary number of periodic semi-infinite arrays with arbitrary orientations. This is done by constructing several coupled systems of equations (one for every semi-infinite array) which are treated independently. The derived systems of equations are solved using the discrete Wiener-Hopf technique and the resulting matrix equation is inverted using elementary matrix arithmetic. Of course, numerically this matrix needs to be truncated, but we are able to do so such that thousands of scatterers on every array are included in the numerical results. Comparisons with other numerical methods are considered, and their strengths/weaknesses are highlighted.

1.
Abrahams
,
I. D.
, and
Wickham
,
G. R.
(
1988
). “
On the scattering of sound by two semi-infinite parallel staggered plates—I. Explicit matrix Wiener-Hopf factorization
,”
Proc. R. Soc. A
420
(
1858
),
131
156
.
2.
Abrahams
,
I. D.
, and
Wickham
,
G. R.
(
1990a
). “
Acoustic scattering by two parallel slightly staggered rigid plates
,”
Wave Motion
12
(
3
),
281
297
.
3.
Abrahams
,
I. D.
, and
Wickham
,
G. R.
(
1990b
). “
The scattering of sound by two semi-infinite parallel staggered plates. II. Evaluation of the velocity potential for an incident plane wave and an incident duct mode
,”
Proc. R. Soc. A
427
(
1872
),
139
171
.
4.
Adams
,
S. D.
,
Craster
,
R. V.
, and
Guenneau
,
S.
(
2008
). “
Bloch waves in periodic multi-layered acoustic waveguides
,”
Proc. R. Soc. A
464
(
2098
),
2669
2692
.
5.
Baddoo
,
P. J.
, and
Ayton
,
L. J.
(
2018
). “
Potential flow through a cascade of aerofoils: Direct and inverse problems
,”
Proc. R. Soc. A
474
(
2217
),
20180065
.
6.
Baddoo
,
P. J.
, and
Ayton
,
L. J.
(
2020
). “
An analytic solution for gust-cascade interaction noise including effects of realistic aerofoil geometry
,”
J. Fluid Mech.
886
,
A1
.
7.
Beatson
,
R.
, and
Greengard
,
L.
(
1997
). “
A short course on fast multipole methods
,” in
Wavelets, Multilevel Methods, and Elliptic PDEs
(
Oxford University Press
,
Oxford
), Chap. 1, pp.
1
37
.
8.
Bonnet-Ben Dhia
,
A.-S.
,
Fliss
,
S.
,
Hazard
,
C.
, and
Tonnoir
,
A.
(
2016
). “
A Rellich type theorem for the Helmholtz equation in a conical domain
,”
C. R. Math
354
(
1
),
27
32
.
9.
Bonnet-Ben Dhia
,
A.-S.
, and
Starling
,
F.
(
1994
). “
Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem
,”
Math. Meth. Appl. Sci.
17
,
305
338
.
10.
Botten
,
L. C.
,
Nicorovici
,
N. A.
,
McPhedran
,
R. C.
,
de Sterke
,
C. M.
, and
Asatryan
,
A. A.
(
2001
). “
Photonic band structure calculations using scattering matrices
,”
Phys. Rev. E
64
,
046603
.
11.
Chapman
,
S. J.
,
Hewett
,
D. P.
, and
Trefethen
,
L. N.
(
2015
). “
Mathematics of the Faraday cage
,”
SIAM Rev.
57
(
3
),
398
417
.
12.
Craster
,
R. V.
,
Guenneau
,
S.
, and
Adams
,
S. D.
(
2009
). “
Mechanism for slow waves near cutoff frequencies in periodic waveguides
,”
Phys. Rev. B
79
(
4
),
045129
.
13.
Crutchfield
,
W.
,
Gimbutas
,
Z.
,
Greengard
,
L.
,
Huang
,
J.
,
Rokhlin
,
V.
,
Yarvin
,
N.
, and
Zhao
,
J.
(
2006
). “
Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions
,”
Contemp. Math.
408
,
99
110
.
14.
Daniele
,
V. G.
, and
Zich
,
R. S.
(
2014
).
The Wiener-Hopf Method in Electromagnetics
(
Scitech
,
Edison, NJ
).
15.
Foldy
,
L. L.
(
1945
). “
The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers
,”
Phys. Rev.
67
(
3-4
),
107
119
.
16.
Ganesh
,
M.
, and
Hawkins
,
S. C.
(
2018
). “
Algorithm 975: TMATROM-A T-matrix reduced order model software
,”
ACM Trans. Math. Softw.
44
(
1
),
9
.
17.
Greengard
,
L.
, and
Gimbutas
,
Z.
(
2012
). “
FMMLIB2D: A matlab toolbox for fast multipole method in two dimensions version 1.2
,” cims.nyu.edu/cmcl/software.html (Last viewed September 1, 2023).
18.
Haslinger
,
S. G.
,
Craster
,
R. V.
,
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
Jones
,
I. S.
(
2016
). “
Dynamic interfacial trapping of flexural waves in structured plates
,”
Proc. R. Soc. A
472
(
20152186
),
20150658
.
19.
Haslinger
,
S. G.
,
Jones
,
I. S.
,
Movchan
,
N. V.
, and
Movchan
,
A. B.
(
2018
). “
Localization in semi-infinite herringbone waveguides
,”
Proc. Math. Phys. Eng. Sci.
474
,
20170590
.
20.
Haslinger
,
S. G.
,
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
McPhedran
,
R. C.
(
2014
). “
Symmetry and resonant modes in platonic grating stacks
,”
Waves Random Complex Media
24
(
2
),
126
148
.
21.
Hawkins
,
S. C.
(
2023
). “
A T-matrix repository for two- and three-dimensional multiple wave scattering simulations in MATLAB
,” https://github.com/stuart-hawkins/tmatsolver (Last viewed September 1, 2023).
22.
Heins
,
A. E.
(
1948a
). “
The radiation and transmission properties of a pair of parallel plates—II
,”
Q. Appl. Math.
6
(
3
),
215
220
.
23.
Heins
,
A. E.
(
1948b
). “
The radiation and transmission properties of a pair of semi-infinite parallel plates—I
,”
Q. Appl. Math.
6
(
2
),
157
166
.
24.
Hewett
,
D. P.
, and
Hewitt
,
I. J.
(
2016
). “
Homogenized boundary conditions and resonance effects in Faraday cages
,”
Proc. R. Soc. A
472
(
2189
),
20160062
.
25.
Hills
,
N. L.
, and
Karp
,
S. N.
(
1965
). “
Semi-infinite diffraction gratings—I
,”
Commun. Pure Appl. Math.
18
,
203
233
.
26.
Jones
,
D. S.
(
1986
). “
Diffraction by three semi-infinite planes
,”
Proc. R. Soc. A
404
,
299
321
.
27.
Jones
,
I. S.
,
Movchan
,
N. V.
, and
Movchan
,
A. B.
(
2017
). “
Blockage and guiding of flexural waves in a semi-infinite double grating
,”
Math. Meth. Appl. Sci.
40
(
9
),
3265
3282
.
28.
Kirby
,
R.
(
2008
). “
Modeling sound propagation in acoustic waveguides using a hybrid numerical method
,”
J. Acoust. Soc. Am.
124
(
4
),
1930
1940
.
29.
Kisil
,
A. V.
(
2018
). “
An iterative Wiener-Hopf method for triangular matrix functions with exponential factors
,”
SIAM J. Appl. Math.
78
(
1
),
45
62
.
30.
Kisil
,
A. V.
, and
Ayton
,
L. J.
(
2018
). “
Aerodynamic noise from rigid trailing edges with finite porous extensions
,”
J. Fluid Mech.
836
,
117
144
.
31.
Krynkin
,
A.
, and
McIver
,
P.
(
2009
). “
Approximations to wave propagation through a lattice of Dirichlet scatterers
,”
Waves Random Complex Media
19
(
2
),
347
365
.
32.
Lawrie
,
J. B.
, and
Abrahams
,
I. D.
(
2007
). “
A brief historical perspective of the Wiener-Hopf technique
,”
J. Eng. Math.
59
(
4
),
351
358
.
33.
Linton
,
C. M.
(
1998
). “
The Green's function for the two-dimensional Helmholtz equation in periodic domains
,”
J. Eng. Math
33
(
4
),
377
402
.
34.
Linton
,
C. M.
(
2006
). “
Schlömilch series that arise in diffraction theory and their efficient computation
,”
J. Phys. A: Math. Gen.
39
(
13
),
3325
3339
.
35.
Linton
,
C. M.
(
2010
). “
Lattice sums for the Helmhoitz equation
,”
SIAM Rev.
52
(
4
),
630
674
.
36.
Linton
,
C. M.
, and
Martin
,
P. A.
(
2004
). “
Semi-infinite arrays of isotropic point scatterers. A unified approach
,”
SIAM J. Appl. Math.
64
(
3
),
1035
1056
.
37.
Lynott
,
G. M.
,
Andrew
,
V.
,
Abrahams
,
I. D.
,
Simon
,
M. J.
,
Parnell
,
W. J.
, and
Assier
,
R. C.
(
2019
). “
Acoustic scattering from a one-dimensional array; Tail-end asymptotics for efficient evaluation of the quasi-periodic Green's function
,”
Wave Motion
89
,
232
244
.
38.
Maierhofer
,
G.
, and
Peake
,
N.
(
2020
). “
Wave scattering by an infinite cascade of non-overlapping blades
,”
J. Sound Vib.
481
,
115418
.
39.
Maierhofer
,
G.
, and
Peake
,
N.
(
2022
). “
Acoustic and hydrodynamic power of wave scattering by an infinite cascade of plates in mean flow
,”
J. Sound Vib.
520
,
116564
.
40.
Martin
,
P. A.
(
2006
).
Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles
(
Cambridge University Press
,
Cambridge
).
41.
Martin
,
P. A.
(
2014
). “
On acoustic and electric Faraday cages
,”
Proc. R. Soc. A
470
,
20140344
.
42.
Maurya
,
G.
, and
Sharma
,
B. L.
(
2019
). “
Scattering by two staggered semi-infinite cracks on square lattice: An application of asymptotic Wiener-Hopf factorization
,”
Z. Angew. Math. Phys.
70
(
5
),
133
.
43.
McIver
,
P.
(
2007
). “
Approximations to wave propagation through doubly-periodic arrays of scatterers
,”
Waves Random Complex Media
17
(
4
),
439
453
.
44.
Movchan
,
N. V.
,
McPhedran
,
R. C.
,
Movchan
,
A. B.
, and
Poulton
,
C. G.
(
2009
). “
Wave scattering by platonic grating stacks
,”
Proc. R. Soc. A
465
(
2111
),
3383
3400
.
45.
Nethercote
,
M. A.
,
Assier
,
R. C.
, and
Abrahams
,
I. D.
(
2020a
). “
Analytical methods for perfect wedge diffraction: A review
,”
Wave Motion
93
,
102479
.
46.
Nethercote
,
M. A.
,
Assier
,
R. C.
, and
Abrahams
,
I. D.
(
2020b
). “
High-contrast approximation for penetrable wedge diffraction
,”
IMA J. Appl. Math.
85
(
3
),
421
466
.
47.
Nethercote
,
M. A.
,
Kisil
,
A. V.
, and
Assier
,
R. C.
(
2022a
). “
Diffraction of acoustic waves by a wedge of point scatterers
,”
SIAM J. Appl. Math.
82
(
3
),
872
898
.
48.
Nethercote
,
M. A.
,
Thompson
,
I.
,
Kisil
,
A. V.
, and
Assier
,
R. C.
(
2022b
). “
Array scattering resonance in the context of Foldy's approximation
,”
Proc. R. Soc. A
478
,
20220604
.
49.
Peake
,
N.
(
1992
). “
The interaction between a high-frequency gust and a blade row
,”
J. Fluid Mech.
241
,
261
289
.
50.
Peake
,
N.
, and
Cooper
,
A. J.
(
2001
). “
Acoustic propagation in ducts with slowly varying elliptic cross-section
,”
J. Sound Vib.
243
(
3
),
381
401
.
51.
Peake
,
N.
, and
Kerschen
,
E. J.
(
1997
). “
Influence of mean loading on noise generated by the interaction of gusts with a flat-plate cascade: Upstream radiation
,”
J. Fluid Mech.
347
,
315
346
.
52.
Peake
,
N.
, and
Kerschen
,
E. J.
(
2004
). “
Influence of mean loading on noise generated by the interaction of gusts with a cascade: Downstream radiation
,”
J. Fluid Mech.
515
,
99
133
.
53.
Rogosin
,
S. V.
, and
Mishuris
,
G. S.
(
2016
). “
Constructive methods for factorization of matrix-functions
,”
IMA J. Appl. Math.
81
(
2
),
365
391
.
54.
Shanin
,
A. V.
(
1998
). “
Excitation of waves in a wedge-shaped region
,”
Acoust. Phys.
44
(
5
),
592
597
.
55.
Sharma
,
B. L.
(
2015a
). “
Diffraction of waves on square lattice by semi-infinite crack
,”
SIAM J. Appl. Math.
75
(
3
),
1171
1192
.
56.
Sharma
,
B. L.
(
2015b
). “
Diffraction of waves on square lattice by semi-infinite rigid constraint
,”
Wave Motion
59
,
52
68
.
57.
Thompson
,
I.
, and
Linton
,
C. M.
(
2008
). “
An interaction theory for scattering by defects in arrays
,”
SIAM J. Appl. Math.
68
(
6
),
1783
1806
.
58.
Thompson
,
I.
,
Linton
,
C. M.
, and
Porter
,
R.
(
2008
). “
A new approximation method for scattering by long finite arrays
,”
Q. J. Mech. Appl. Math
61
(
3
),
333
352
.
You do not currently have access to this content.