Noise generated by wind turbines is significantly impacted by its propagation in the atmosphere. Hence, for annoyance issues, an accurate prediction of sound propagation is critical to determine noise levels around wind turbines. This study presents a method to predict wind turbine sound propagation based on linearized Euler equations. We compare this approach to the parabolic equation method, which is widely used since it captures the influence of atmospheric refraction, ground reflection, and sound scattering at a low computational cost. Using the linearized Euler equations is more computationally demanding but can reproduce more physical effects as fewer assumptions are made. An additional benefit of the linearized Euler equations is that they provide a time-domain solution. To compare both approaches, we simulate sound propagation in two distinct scenarios. In the first scenario, a wind turbine is situated on flat terrain; in the second, a turbine is situated on a hilltop. The results show that both methods provide similar noise predictions in the two scenarios. We find that while some differences in the propagation results are observed in the second case, the final predictions for a broadband extended source are similar between the two methods.

1.
Attenborough
,
K.
,
Bashir
,
I.
, and
Taherzadeh
,
S.
(
2011
). “
Outdoor ground impedance models
,”
J. Acoust. Soc. Am.
129
(
5
),
2806
2819
.
2.
Barlas
,
E.
,
Wu
,
K. L.
,
Zhu
,
W. J.
,
Porté-Agel
,
F.
, and
Shen
,
W. Z.
(
2018
). “
Variability of wind turbine noise over a diurnal cycle
,”
Renew. Energy
126
,
791
800
.
3.
Barlas
,
E.
,
Zhu
,
W. J.
,
Shen
,
W. Z.
,
Dag
,
K. O.
, and
Moriarty
,
P.
(
2017a
). “
Consistent modelling of wind turbine noise propagation from source to receiver
,”
J. Acoust. Soc. Am.
142
(
5
),
3297
3310
.
4.
Barlas
,
E.
,
Zhu
,
W. J.
,
Shen
,
W. Z.
,
Kelly
,
M.
, and
Andersen
,
S. J.
(
2017b
). “
Effects of wind turbine wake on atmospheric sound propagation
,”
Appl. Acoust.
122
,
51
61
.
5.
Berland
,
J.
,
Bogey
,
C.
, and
Bailly
,
C.
(
2006
). “
Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm
,”
Comput. Fluids
35
(
10
),
1459
1463
.
6.
Berland
,
J.
,
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
(
2007
). “
High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems
,”
J. Comput. Phys.
224
(
2
),
637
662
.
7.
Blumrich
,
R.
, and
Heimann
,
D.
(
2002
). “
A linearized Eulerian sound propagation model for studies of complex meteorological effects
,”
J. Acoust. Soc. Am.
112
(
2
),
446
455
.
8.
Bogey
,
C.
, and
Bailly
,
C.
(
2004
). “
A family of low dispersive and low dissipative explicit schemes for flow and noise computations
,”
J. Comput. Phys.
194
(
1
),
194
214
.
9.
Collino
,
F.
(
1997
). “
Perfectly matched absorbing layers for the paraxial equations
,”
J. Comput. Phys.
131
(
1
),
164
180
.
10.
Cosnefroy
,
M.
(
2019
). “
Simulation numérique de la propagation dans l'atmosphère de sons impulsionnels et confrontations exp érimentales” (“Numerical simulation of atmospheric propagation of impulse sound and experimental comparisons”)
, Ph.D. thesis,
Ecole Centrale de Lyon
,
Lyon, France
.
11.
Cotté
,
B.
(
2019
). “
Extended source models for wind turbine noise propagation
,”
J. Acoust. Soc. Am.
145
(
3
),
1363
1371
.
12.
Dallois
,
L.
,
Blanc-Benon
,
P.
, and
Juvé
,
D.
(
2001
). “
A wide-angle parabolic equation for acoustic waves in inhomogeneous moving media: Applications to atmospheric sound propagation
,”
J. Comp. Acoust.
09
(
02
),
477
494
.
13.
Dragna
,
D.
, and
Blanc-Benon
,
P.
(
2014
). “
Towards realistic simulations of sound radiation by moving sources in outdoor environments
,”
Int. J. Aeroacoust.
13
(
5–6
),
405
426
.
14.
Dragna
,
D.
,
Cotté
,
B.
,
Blanc-Benon
,
P.
, and
Poisson
,
F.
(
2011
). “
Time-domain simulations of outdoor sound propagation with suitable impedance boundary conditions
,”
AIAA J.
49
(
7
),
1420
1428
.
15.
Dumortier
,
B.
,
Vincent
,
E.
, and
Deaconu
,
M.
(
2015
). “
Acoustic control of wind farms
,” in
Proceedings of the European Wind Energy Association Conference
, EWEA, Paris, France, November 17–20, pp.
1
8
.
16.
Gadde
,
S. N.
, and
Stevens
,
R. J. A. M.
(
2021
). “
Interaction between low-level jets and wind farms in a stable atmospheric boundary layer
,”
Phys. Rev. Fluids
6
(
1
),
014603
.
17.
Gadde
,
S. N.
,
Stieren
,
A.
, and
Stevens
,
R. J. A. M.
(
2021
). “
Large-eddy simulations of stratified atmospheric boundary layers: Comparison of different subgrid models
,”
Boundary Layer Meteorol.
178
(
3
),
363
382
.
18.
Gal-Chen
,
T.
, and
Somerville
,
R. C.
(
1975
). “
On the use of a coordinate transformation for the solution of the Navier–Stokes equations
,”
J. Comput. Phys.
17
(
2
),
209
228
.
19.
Gilbert
,
K. E.
, and
White
,
M. J.
(
1989
). “
Application of the parabolic equation to sound propagation in a refracting atmosphere
,”
J. Acoust. Soc. Am.
85
(
2
),
630
637
.
20.
Hansen
,
K. L.
,
Nguyen
,
P.
,
Zajamšek
,
B.
,
Catcheside
,
P.
, and
Hansen
,
C. H.
(
2019
). “
Prevalence of wind farm amplitude modulation at long-range residential locations
,”
J. Sound Vib.
455
,
136
149
.
21.
Heimann
,
D.
, and
Englberger
,
A.
(
2018
). “
3D-simulation of sound propagation through the wake of a wind turbine: Impact of the diurnal variability
,”
Appl. Acoust.
141
,
393
402
.
22.
Heimann
,
D.
,
Englberger
,
A.
, and
Schady
,
A.
(
2018
). “
Sound propagation through the wake flow of a hilltop wind turbine—A numerical study
,”
Wind Energy
21
(
8
),
650
662
.
23.
Kayser
,
B.
,
Cotté
,
B.
,
Ecotière
,
D.
, and
Gauvreau
,
B.
(
2020
). “
Environmental parameters sensitivity analysis for the modeling of wind turbine noise in downwind conditions
,”
J. Acoust. Soc. Am.
148
(
6
),
3623
3632
.
24.
Kayser
,
B.
,
Mascarenhas
,
D.
,
Cotté
,
B.
,
Ecotière
,
D.
, and
Gauvreau
,
B.
(
2023
). “
Validity of the effective sound speed approximation in parabolic equation models for wind turbine noise propagation
,”
J. Acoust. Soc. Am.
153
(
3
),
1846
1854
.
25.
Komatitsch
,
D.
, and
Martin
,
R.
(
2007
). “
An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation
,”
Geophys. J. Int.
72
(
1
),
333
344
.
26.
Lee
,
S.
,
Lee
,
D.
, and
Honhoff
,
S.
(
2016
). “
Prediction of far-field wind turbine noise propagation with parabolic equation
,”
J. Acoust. Soc. Am.
140
(
2
),
767
778
.
27.
Liu
,
L.
, and
Stevens
,
R. J. A. M.
(
2020
). “
Effects of two-dimensional steep hills on the performance of wind turbines and wind farms
,”
Boundary Layer Meteorol.
176
(
2
),
251
269
.
28.
Nyborg
,
C. M.
,
Fischer
,
A.
,
Thysell
,
E.
,
Feng
,
J.
,
Søndergaard
,
L. S.
,
Hansen
,
T. R.
,
Hansen
,
K. S.
, and
Bertagnolio
,
F.
(
2022
). “
Propagation of wind turbine noise: Measurements and model evaluation
,”
J. Phys. Conf. Ser.
2265
,
032041
.
29.
Ostashev
,
V. E.
,
Wilson
,
D. K.
,
Liu
,
L.
,
Aldridge
,
D. F.
,
Symons
,
N. P.
, and
Marlin
,
D.
(
2005
). “
Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation
,”
J. Acoust. Soc. Am.
117
(
2
),
503
517
.
30.
Ostashev
,
V. E.
,
Wilson
,
D. K.
, and
Muhlestein
,
M. B.
(
2020
). “
Wave and extra-wide-angle parabolic equations for sound propagation in a moving atmosphere
,”
J. Acoust. Soc. Am.
147
(
6
),
3969
3984
.
31.
Prospathopoulos
,
J. M.
, and
Voutsinas
,
S. G.
(
2007
). “
Application of a ray theory model to the prediction of noise emissions from isolated wind turbines and wind parks
,”
Wind Energy
10
(
2
),
103
119
.
32.
Rienstra
,
S.
(
2006
). “
Impedance models in time domain, including the extended Helmoltz resonator model
,” in
Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
, May 8–10, Cambridge, MA (
American Institute of Aeronautics and Astronautics
,
Reston, VA
).
33.
Sack
,
R. A.
, and
West
,
M.
(
1995
). “
A parabolic equation for sound propagation in two dimensions over any smooth terrain profile: The generalised terrain parabolic equation (GT-PE)
,”
Appl. Acoust.
45
(
2
),
113
129
.
34.
Salomons
,
E. M.
(
2001
).
Computational Atmospheric Acoustics
(
Springer
,
Dordrecht, Netherlands
).
35.
Salomons
,
E. M.
,
Blumrich
,
R.
, and
Heimann
,
D.
(
2002
). “
Eulerian time-domain model for sound propagation over a finite-impedance ground surface: Comparison with frequency-domain models
,”
Acta Acust. united Acust.
88
(
4
),
483
492
.
36.
Sessarego
,
M.
, and
Shen
,
W. Z.
(
2020
). “
Noise propagation calculation of a wind turbine in complex terrain
,”
J. Phys: Conf. Ser.
1452
(
1
),
012063
.
37.
Shen
,
W. Z.
,
Zhu
,
W. J.
,
Barlas
,
E.
, and
Li
,
Y.
(
2019
). “
Advanced flow and noise simulation method for wind farm assessment in complex terrain
,”
Renew. Energy
143
,
1812
1825
.
38.
Tian
,
Y.
, and
Cotté
,
B.
(
2016
). “
Wind turbine noise modeling based on Amiet's theory: Effects of wind shear and atmospheric turbulence
,”
Acta Acust. united Acust.
102
(
4
),
626
639
.
39.
Troian
,
R.
,
Dragna
,
D.
,
Bailly
,
C.
, and
Galland
,
M.-A.
(
2017
). “
Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow
,”
J. Sound Vib.
392
,
200
216
.
40.
Van Renterghem
,
T.
(
2014
). “
Efficient outdoor sound propagation modeling with the finite-difference time-domain FDTD method: A review
,”
Int. J. Aeroacoust.
13
(
5–6
),
385
404
.
You do not currently have access to this content.