Immersive and spatial sound reproduction has been widely studied using loudspeaker arrays. However, flat-panel loudspeakers that utilize thin flat panels with force actuators are a promising alternative to traditional coaxial loudspeakers for practical applications, with benefits in low-visual profiles and diffuse radiation. Literature has addressed the sound quality and applications of flat-panel loudspeakers in three-dimensional sound reproduction, such as wave field synthesis and sound zones. This paper revisits the spatial sound perception of flat-panel loudspeakers, specifically the localization mismatch between the perceived and desired sound directions when using amplitude panning. Subjective tests in an anechoic chamber with 24 subjects result in the mean azimuth direction mismatch within ±6.0° and the mean elevation mismatch within ±10.0°. The experimental results show that the virtual source created by amplitude panning over a flat-panel loudspeaker still achieves spatial localization accuracy close to that of a real sound source, despite not using complex algorithms or acoustic transfer function information. The findings of this study establish a benchmark for virtual source localization in spatial sound reproduction using flat-panel loudspeakers, which can serve as a starting point for future research and optimization of algorithms.

1.
S.
Spors
,
H.
Wierstorf
,
A.
Raake
,
F.
Melchior
,
M.
Frank
, and
F.
Zotter
, “
Spatial sound with loudspeakers and its perception: A review of the current state
,”
Proc. IEEE
101
(
9
),
1920
1938
(
2013
).
2.
P.
Coleman
,
A.
Franck
,
P. J.
Jackson
,
R. J.
Hughes
,
L.
Remaggi
, and
F.
Melchior
, “
Object-based reverberation for spatial audio
,”
J. Audio Eng. Soc.
65
(
1/2
),
66
77
(
2017
).
3.
J.
Blauert
,
Spatial Hearing: The Psychophysics of Human Sound Localization
(
MIT Press
,
Cambridge, MA
,
1997
), pp.
137
191
.
4.
V.
Erbes
and
S.
Spors
, “
Localisation properties of wave field synthesis in a listening room
,”
IEEE/ACM Trans. Audio, Speech, Language Process.
28
,
1016
1024
(
2020
).
5.
B.
Xie
,
Head-Related Transfer Function and Virtual Auditory Display
, 2nd ed. (
J. Ross Publishing
,
Plantation, FL
,
2013
), pp.
8
12
.
6.
C.
Kyriakakis
,
P.
Tsakalides
, and
T.
Holman
, “
Surrounded by sound
,”
IEEE Signal Process. Mag.
16
(
1
),
55
66
(
1999
).
7.
T.
Betlehem
,
W.
Zhang
,
M. A.
Poletti
, and
T. D.
Abhayapala
, “
Personal sound zones: Delivering interface-free audio to multiple listeners
,”
IEEE Signal Process. Mag.
32
(
2
),
81
91
(
2015
).
8.
Q.
Zhu
,
P.
Coleman
,
M.
Wu
, and
J.
Yang
, “
Robust acoustic contrast control with reduced in-situ measurement by acoustic modeling
,”
J. Audio Eng. Soc.
65
(
6
),
460
473
(
2017
).
9.
S.
Cecchi
,
A.
Carini
, and
S.
Spors
, “
Room response equalization–A review
,”
Appl. Sci.
8
(
1
),
16
(
2017
).
10.
M.
Poletti
, “
Robust two-dimensional surround sound reproduction for nonuniform loudspeaker layouts
,”
J. Audio Eng. Soc.
55
(
7/8
),
598
610
(
2007
).
11.
S.
Koyama
,
G.
Chardon
, and
L.
Daudet
, “
Optimizing source and sensor placement for sound field control: An overview
,”
IEEE/ACM Trans. Audio, Speech, Language Process.
28
,
696
714
(
2020
).
12.
Q.
Zhu
,
P.
Coleman
,
X.
Qiu
,
M.
Wu
,
J.
Yang
, and
I.
Burnett
, “
Robust personal audio geometry optimization in the SVD-based modal domain
,”
IEEE/ACM Trans. Audio, Speech, Language Process
27
(
3
),
610
620
(
2019
).
13.
Q.
Zhu
,
X.
Qiu
,
P.
Coleman
, and
I.
Burnett
, “
An experimental study on transfer function estimation using acoustic modelling and singular value decomposition
,”
J. Acoust. Soc. Am.
150
(
5
),
3557
3568
(
2021
).
14.
B.
Pueo
,
J. J.
López
,
J.
Escolano
, and
L.
Hörchens
, “
Multiactuator panels for wave field synthesis: Evolution and present developments
,”
J. Audio Eng. Soc.
58
(
12
),
1045
1063
(
2011
).
15.
Z.
Li
,
P.
Luo
,
C.
Zheng
, and
X.
Li
, “
Vibrational contrast control for local sound source rendering on flat panel loudspeakers
,” in
Proceedings of the 145th Audio Engineering Society Convention
,
New York, NY
,
October 17–20
,
2018
.
16.
M. C.
Heilemann
,
D.
Anderson
, and
M. F.
Bocko
, “
Sound-source localization on flat-panel loudspeakers
,”
J. Audio Eng. Soc.
65
(
3
),
168
177
(
2017
).
17.
V. P.
Gontcharov
and
N. P.
Hill
, “
Diffusivity properties of distributed mode loudspeakers
,” in
Proceedings of the 108th Audio Engineering Society Convention
,
Paris, France
,
February 19–22
,
2000
.
18.
N.
Harris
, “
Modelling acoustic room interaction for pistonic and distributed-mode loudspeakers in the correlation domain
,” in
Proceedings of the 117th Audio Engineering Society Convention
,
San Francisco, CA
,
October 28–31
,
2004
.
19.
M. C.
Heilemann
,
D. A.
Anderson
,
S.
Roessner
, and
M. F.
Bocko
, “
The evolution and design of flat-panel loudspeakers for audio reproduction
,”
J. Audio Eng. Soc.
69
(
1/2
),
27
39
(
2021
).
20.
M. M.
Boone
, “
Multi-actuator panels (MAPs) as loudspeaker arrays for wave field synthesis
,”
J. Audio Eng. Soc.
52
(
7/8
),
712
723
(
2004
).
21.
N.
Kournoutos
and
J.
Cheer
, “
A system for controlling the directivity of sound radiated from a structure
,”
J. Acoust. Soc. Am.
147
(
1
),
231
241
(
2020
).
22.
S.
Flanagan
and
N.
Harris
, “
Loudness: A study of the subjective difference between DML and conventional loudspeaker
,” in
Proceedings of the 106th Audio Engineering Society Convention
,
Munich, Germany
,
May 8–11
,
1999
.
23.
N. J.
Harris
, “
The acoustics and psychoacoustics of the distributed-mode loudspeaker (DML)
,” Ph.D. dissertation,
University of Essex
,
Essex, UK
,
2001
.
24.
M.
Rébillat
,
E.
Corteel
,
B. F.
Katz
, and
X.
Boutillon
, “
From vibration to perception: Using large multi-actuator panels (LaMAPs) to create coherent audio-visual environments
,” in
Acoustics 2012
,
Nantes, France
,
April 23–27
,
2012
.
25.
M.
Heilemann
,
D.
Anderson
,
S.
Roessner
, and
M. F.
Bocko
, “
Quantifying listener preference of flat-panel loudspeakers
,” in
Proceedings of the 145th Audio Engineering Society Convention
,
New York, NY
,
October 17–20
,
2018
.
26.
E.
Corteel
,
K.-V.
Nguyen
,
O.
Warusfel
,
T.
Caulkins
, and
R.
Pellegrini
, “
Objective and subjective comparison of electrodynamic and MAP loudspeakers for wave field synthesis
,” in
Proceedings of the Audio Engineering Society Conference: 30th International Conference: Intelligent Audio Environments
,
Saariselka, Finland
,
March 15–17
,
2007
.
27.
V.
Pulkki
, “
Virtual sound source positioning using vector base amplitude panning
,”
J. Audio Eng. Soc.
45
(
6
),
456
466
(
1997
).
28.
E.
Erdem
,
Z.
Cvetkovic
, and
H.
Hacihabiboglu
, “
3D perceptual soundfield reconstruction via virtual microphone synthesis
,”
IEEE/ACM Trans. Audio, Speech, Language Process.
31
,
1305
1317
(
2023
).
29.
A.
Franck
,
W.
Wang
, and
F. M.
Fazi
, “
Sparse 1-optimal multiloudspeaker panning and its relation to vector base amplitude panning
,”
IEEE/ACM Trans. Audio, Speech, Language Process.
25
(
5
),
996
1010
(
2017
).
30.
M. C.
Heilemann
,
D. A.
Anderson
, and
M. F.
Bocko
, “
Near-field object-based audio rendering on flat-panel displays
,”
J. Audio Eng. Soc.
67
(
7/8
),
531
539
(
2019
).
31.
M. C.
Heilemann
, “
Spatial audio rendering with flat-panel loudspeakers
,” Ph.D. dissertation,
University of Rochester
,
Rochester, NY
,
2018
.
32.
M.
Kuster
,
D. D.
Vries
,
D.
Beer
, and
S.
Brix
, “
Structural and acoustic analysis of multiactuator panels
,”
J. Audio Eng. Soc.
54
(
11
),
1065
1076
(
2006
).
33.
V.
Pulkki
, “
Generic panning tools for MAX/MSP
,” in
Proceedings of the 2000 International Computer Music Conference
,
Berlin, Germany
,
August 27–September 1
,
2000
, pp.
304
307
.
34.
V.
Pulkki
, “
Localization of amplitude-panned virtual sources II: Two-and three-dimensional panning
,”
J. Audio Eng. Soc.
49
(
9
),
753
767
(
2001
).
35.
A.
Politis
, “
Microphone array processing for parametric spatial audio techniques
,” Ph.D. dissertation,
Aalto University
,
Otaniemi, Espoo, Finland
,
2016
.
36.
H.
Wierstorf
and
S.
Spors
, “
Sound field synthesis toolbox
,” in
Proceedings of the 132nd Audio Engineering Society Convention
,
Budapest, Hungary
,
April 26–29
,
2012
.
37.
U.
Zölzer
,
DAFX: Digital Audio Effects
, 2nd ed. (
John Wiley & Sons, West Sussex, UK
,
2002
), pp.
283
289
.
38.
D.
Howard
and
J.
Angus
,
Acoustics and Psychoacoustics
, 4th ed. (
Focal Press
,
Oxford, UK
,
2009
), pp.
107
111
.
39.
J.
Zheng
,
T.
Zhu
,
J.
Lu
, and
X.
Qiu
, “
A linear robust binaural sound reproduction system with optimal source distribution strategy
,”
J. Audio Eng. Soc.
63
(
9
),
725
735
(
2015
).
40.
B.
Xie
,
H.
Mai
,
D.
Rao
, and
X.
Zhong
, “
Analysis of and experiments on vertical summing localization of multichannel sound reproduction with amplitude panning
,”
J. Audio Eng. Soc.
67
(
6
),
382
399
(
2019
).
41.
R.
Algazi
,
C.
Avendano
, and
R. O.
Duda
, “
Estimation of a spherical-head model from anthropometry
,”
J. Audio Eng. Soc.
49
(
6
),
472
479
(
2001
).
42.
ITU-R BS.2159-9
,
Multichannel Sound Technology in Home and Broadcasting Applications
(
International Telecommunications Union
,
2022
).
43.
B.
Xie
,
Spatial Sound: Principles and Applications
(
CRC Press
,
Boca Raton, FL
,
2023
), pp.
704
710
.
You do not currently have access to this content.