We investigate the amplitude modulation of acoustic waves in accelerating flows, a problem that is still not fully understood, but essential to many technical applications, ranging from medical imaging to acoustic remote sensing. The proposed modeling framework is based on a convective form of the Kuznetsov equation, which incorporates the background flow field and is solved numerically by a finite-difference method. Using acoustic black and white hole analogues as model systems, we identify a modulation of the wave amplitude which is shown to be driven by the divergence/convergence of the acoustic wave characteristics in an accelerating/decelerating flow, and which is distinct from the convective amplification accompanying an acoustic emitter moving at a constant velocity. To rationalize the observed amplitude modulation, a leading-order model is derived from first principles, leveraging a similarity of the wave characteristics and the wave amplitude with respect to a modified Helmholtz number. This leading-order model may serve as a basis for the numerical prediction and analysis of the behavior of acoustic waves in accelerating flows, by taking advantage of the notion that any accelerating flow field can be described locally as a virtual acoustic black or white hole.

1.
Blackstock
,
D. T.
(
1966
). “
Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude
,”
J. Acoust. Soc. Am.
39
(
6
),
1019
1026
.
2.
Brooks
,
D. A.
,
Schwander
,
O.
,
Barbaresco
,
F.
,
Schneider
,
J.-Y.
, and
Cord
,
M.
(
2018
). “
Temporal deep learning for drone micro-Doppler classification
,” in
2018 19th International Radar Symposium (IRS)
,
Bonn
,
Germany
, 2018, pp.
1
10
.
3.
Červenka
,
M.
, and
Bednařík
,
M.
(
2019
). “
A versatile computational approach for the numerical modelling of parametric acoustic array
,”
J. Acoust. Soc. Am.
146
(
4
),
2163
2169
.
4.
Červenka
,
M.
, and
Bednařík
,
M.
(
2022
). “
An algebraic correction for the Westervelt equation to account for the local nonlinear effects in parametric acoustic array
,”
J. Acoust. Soc. Am.
151
(
6
),
4046
4052
.
5.
Christov
,
I. C.
, and
Christov
,
C. I.
(
2017
). “
On mechanical waves and Doppler shifts from moving boundaries
,”
Math. Meth. Appl. Sci.
40
(
12
),
4481
4492
.
6.
Crighton
,
D. G.
,
Dowling
,
A. P.
,
Williams
,
J. E. F.
,
Heckl
,
M.
, and
Leppington
,
F. G.
(
1992
). “
Effects of motion on acoustic sources
,” in
Modern Methods in Analytical Acoustics
(
Springer London
,
London
), pp.
406
427
.
7.
Dekkers
,
A.
,
Rozanova-Pierrat
,
A.
, and
Khodygo
,
V.
(
2020
). “
Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation
,”
Discrete Contin. Dyn. Syst.
40
(
7
),
4231
4258
.
8.
Denner
,
F.
, and
Schenke
,
S.
(
2023
). “
Modeling acoustic emissions and shock formation of cavitation bubbles
,”
Phys. Fluids
35
(
1
),
012114
.
9.
Dey
,
S.
, and
Dey
,
C.
(
1983
). “
An Explicit Predictor-Corrector Solver with Applications to Burgers' Equation, NASA Technical Memorandum 84402
” (NASA Ames Research Center, Moffet Field, CA).
10.
Dowling
,
D. R.
, and
Sabra
,
K. G.
(
2015
). “
Acoustic remote sensing
,”
Annu. Rev. Fluid Mech.
47
(
1
),
221
243
.
11.
Ewert
,
R.
, and
Schröder
,
W.
(
2003
). “
Acoustic perturbation equations based on flow decomposition via source filtering
,”
J. Comput. Phys.
188
(
2
),
365
398
.
12.
Gasperini
,
D.
,
Beise
,
H. P.
,
Schroeder
,
U.
,
Antoine
,
X.
, and
Geuzaine
,
C.
(
2021
). “
A frequency domain method for scattering problems with moving boundaries
,”
Wave Motion
102
,
102717
.
13.
Gasperini
,
D.
,
Biese
,
H.-P.
,
Schroeder
,
U.
,
Antoine
,
X.
, and
Geuzaine
,
C.
(
2022
). “
A multiharmonic finite element method for scattering problems with small-amplitude boundary deformations
,”
SIAM J. Sci. Comput.
44
(
2
),
B197
B223
.
14.
Gregory
,
A.
,
Sinayoko
,
S.
,
Agarwal
,
A.
, and
Lasenby
,
J.
(
2015
). “
An acoustic space-time and the Lorentz transformation in aeroacoustics
,”
Int. J. Aeroacoust.
14
,
977
1003
.
15.
Gu
,
J.
, and
Jing
,
Y.
(
2015
). “
Modeling of wave propagation for medical ultrasound: A review
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
62
(
11
),
1979
1992
.
16.
Kuznetsov
,
V. P.
(
1971
). “
Equations of nonlinear acoustics
,”
Sov. Phys. Acoust.
16
,
467
470
.
17.
Li
,
C.
,
Cummings
,
J.
,
Lam
,
J.
,
Graves
,
E.
, and
Wu
,
W.
(
2009
). “
Radar remote monitoring of vital signs
,”
IEEE Microw. Mag.
10
,
47
56
.
18.
Mayoral
,
C.
,
Recati
,
A.
,
Fabbri
,
A.
,
Parentani
,
R.
,
Balbinot
,
R.
, and
Carusotto
,
I.
(
2011
). “
Acoustic white holes in flowing atomic Bose-Einstein condensates
,”
New J. Phys.
13
(
2
),
025007
.
19.
Nascimento
,
W. C. R.
, and
Pestana
,
R. C.
(
2010
). “
An anti-dispersion wave equation based on the predictor-corrector method for seismic modeling and reverse time migration
,” in
SEG Tech. Program Expanded Abstracts 2010
, pp.
3226
3230
.
20.
Oglat
,
A. A.
,
Matjafri
,
M. Z.
,
Suardi
,
N.
,
Oqlat
,
M. A.
,
Abdelrahman
,
M. A.
, and
Oqlat
,
A. A.
(
2018
). “
A review of medical Doppler ultrasonography of blood flow in general and especially in common carotid artery
,”
J. Med. Ultrasound
26
(
1
),
3
13
.
21.
Prosperetti
,
A.
(
1984
). “
Bubble phenomena in sound fields: Part one
,”
Ultrasonics
22
(
2
),
69
77
.
22.
Rienstra
,
S.
, and
Hirschberg
,
A.
(
2004
).
An Introduction to Acoustics
( Technische Universiteit Eindhoven), extended and revised edition of IWDE 92-06 (
Instituut Wiskundige Dienstverlening Eindhoven
,
Eindhoven, Netherlands
).
23.
Schenke
,
S.
,
Sewerin
,
F.
,
van Wachem
,
B.
, and
Denner
,
F.
(
2022a
). “
Acoustic black hole analogy to analyze nonlinear acoustic wave dynamics in accelerating flow fields
,”
Phys. Fluids
34
(
9
),
097103
.
24.
Schenke
,
S.
,
Sewerin
,
F.
,
van Wachem
,
B.
, and
Denner
,
F.
(
2022b
). “
Explicit predictor-corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary
,”
J. Sound Vib.
527
,
116814
.
25.
Schenke
,
S.
,
Sewerin
,
F.
,
van Wachem
,
B.
, and
Denner
,
F.
(
2023
). “Wave-DNA (v1.1),”
Zenodo
. https://doi.org/10.5281/zenodo.8084168
26.
Shevchenko
,
I.
, and
Kaltenbacher
,
B.
(
2015
). “
Absorbing boundary conditions for nonlinear acoustics: The Westervelt equation
,”
J. Comput. Phys.
302
,
200
221
.
27.
Showman
,
A. P.
,
Fortney
,
J. J.
,
Lewis
,
N. K.
, and
Shabram
,
M.
(
2013
). “
Doppler signatures of the atmospheric circulation on hot jupiters
,”
Astrophys. J.
762
(
1
),
24
.
28.
Tabak
,
G.
,
Oelze
,
M. L.
, and
Singer
,
A. C.
(
2022
). “
Effects of acoustic nonlinearity on communication performance in soft tissues
,”
J. Acoust. Soc. Am.
152
(
6
),
3583
3594
.
29.
Unruh
,
W. G.
(
1981
). “
Experimental black-hole evaporation?
,”
Phys. Rev. Lett.
46
,
1351
1353
.
30.
Visser
,
M.
(
1998
). “
Acoustic black holes: Horizons, ergospheres and Hawking radiation
,”
Class. Quant. Grav.
15
,
1767
1791
.
31.
Wang
,
S.
(
2022
). “
Extensions to the Navier-Stokes equations
,”
Phys. Fluids
34
(
5
),
053106
.

Supplementary Material

You do not currently have access to this content.