Fricatives are obstruent sound contrasts made by airflow constrictions in the vocal tract that produce turbulence across the constriction or at a site downstream from the constriction. Fricatives exhibit significant intra/intersubject and contextual variability. Yet, fricatives are perceived with high accuracy. The current study investigated modeled neural responses to fricatives in the auditory nerve (AN) and inferior colliculus (IC) with the hypothesis that response profiles across populations of neurons provide robust correlates to consonant perception. Stimuli were 270 intervocalic fricatives (10 speakers × 9 fricatives × 3 utterances). Computational model response profiles had characteristic frequencies that were log-spaced from 125 Hz to 8 or 20 kHz to explore the impact of high-frequency responses. Confusion matrices generated by k-nearest-neighbor subspace classifiers were based on the profiles of average rates across characteristic frequencies as feature vectors. Model confusion matrices were compared with published behavioral data. The modeled AN and IC neural responses provided better predictions of behavioral accuracy than the stimulus spectra, and IC showed better accuracy than AN. Behavioral fricative accuracy was explained by modeled neural response profiles, whereas confusions were only partially explained. Extended frequencies improved accuracy based on the model IC, corroborating the importance of extended high frequencies in speech perception.

1.
Al-Zubaidi
,
A.
,
Bräuer
,
S.
,
Holdgraf
,
C. R.
,
Schepers
,
I. M.
, and
Rieger
,
J. W.
(
2022
). “
Sublexical cues affect degraded speech processing: Insights from fMRI
,”
Cerebral Cortex Commun.
3
(
1
),
tgac007
.
2.
Asilador
,
A.
, and
Llano
,
D. A.
(
2021
). “
Top-down inference in the auditory system: Potential roles for corticofugal projections
,”
Front. Neural Circuits
14
,
615259
.
3.
Badri
,
R.
,
Siegel
,
J. H.
, and
Wright
,
B. A.
(
2011
). “
Auditory filter shapes and high-frequency hearing in adults who have impaired speech in noise performance despite clinically normal audiograms
,”
J. Acoust. Soc. Am.
129
(
2
),
852
863
.
4.
Behrens
,
S.
, and
Blumstein
,
S. E.
(
1988
). “
On the role of the amplitude of the fricative noise in the perception of place of articulation in voiceless fricative consonants
,”
J. Acoust. Soc. Am.
84
(
3
),
861
867
.
5.
Boersma
,
P.
, and
Weenink
,
D.
(
1992–2022
). “
Praat: Doing phonetics by computer (version 6.2.06) [computer program]
,” available at https://www.praat.org (Last viewed 23 January 2022).
6.
Carney
,
L. H.
(
2018
). “
Supra-threshold hearing and fluctuation profiles: Implications for sensorineural and hidden hearing loss
,”
J. Assoc. Res. Otolaryngol.
19
(
4
),
331
352
.
7.
Carney
,
L. H.
,
Li
,
T.
, and
McDonough
,
J. M.
(
2015
). “
Speech coding in the brain: Representation of vowel formants by midbrain neurons tuned to sound fluctuations
,”
Eneuro
2
(
4
),
ENEURO.0004-15.2015
.
8.
Carney
,
L. H.
, and
McDonough
,
J. M.
(
2019
). “
Nonlinear auditory models yield new insights into representations of vowels
,”
Atten. Percept. Psychophys.
81
(
4
),
1034
1046
.
9.
Catford
,
J. C.
(
1977
).
Fundamental Problems in Phonetics
(
Indiana University Press
,
Bloomington, IN
).
10.
Chodroff
,
E.
, and
Wilson
,
C.
(
2020
). “
Acoustic–phonetic and auditory mechanisms of adaptation in the perception of sibilant fricatives
,”
Atten. Percept. Psychophys.
82
(
4
),
2027
2048
.
11.
Chodroff
,
E.
, and
Wilson
,
C.
(
2022
). “
Uniformity in phonetic realization: Evidence from sibilant place of articulation in American English
,”
Language
98
,
250
–289.
12.
Crystal
,
T. H.
, and
House
,
A. S.
(
1988
). “
Segmental durations in connected-speech signals: Syllabic stress
,”
J. Acoust. Soc. Am.
83
,
1574
1585
.
13.
Cutler
,
A.
,
Weber
,
A.
,
Smits
,
R.
, and
Cooper
,
N.
(
2004
). “
Patterns of English phoneme confusions by native and non-native listeners
,”
J. Acoust. Soc. Am.
116
(
6
),
3668
3678
.
14.
Davis
,
M. H.
, and
Johnsrude
,
I. S.
(
2007
). “
Hearing speech sounds: Top-down influences on the interface between audition and speech perception
,”
Hear. Res.
229
(
1
),
132
147
.
15.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987
). “
Responses of auditory‐nerve fibers to nasal consonant–vowel syllables
,”
J. Acoust. Soc. Am.
82
(
6
),
1977
1988
.
16.
Evers
,
V.
,
Reetz
,
H.
, and
Lahiri
,
A.
(
1998
). “
Crosslinguistic acoustic categorization of sibilants independent of phonological status
,”
J. Phonetics
26
(
4
),
345
370
.
17.
Farhadi
,
A.
,
Jennings
,
S. G.
,
Strickland
,
E. A.
, and
Carney
,
L. H.
(
2021
). “
A Closed-loop gain-control feedback model for the medial efferent system of the descending auditory pathway
,” in
ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Toronto, Canada (IEEE, New York).
18.
Forrest
,
K.
,
Weismer
,
G.
,
Milenkovic
,
P.
, and
Dougall
,
R. N.
(
1988
). “
Statistical analysis of word‐initial voiceless obstruents: Preliminary data
,”
J. Acoust. Soc. Am.
84
(
1
),
115
123
.
19.
Gallun
,
F.
, and
Souza
,
P.
(
2008
). “
Exploring the role of the modulation spectrum in phoneme recognition
,”
Ear Hear.
29
(
5
),
800
--
813
.
20.
Gordon
,
M.
,
Barthmaier
,
P.
, and
Sands
,
K.
(
2002
). “
A cross-linguistic acoustic study of voiceless fricatives
,”
J. Int. Phonetic Assoc.
32
(
2
),
141
174
.
21.
Goutman
,
J. D.
, and
Glowatzki
,
E.
(
2007
). “
Time course and calcium dependence of transmitter release at a single ribbon synapse
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
41
),
16341
16346
.
22.
Haggard
,
M.
(
1978
). “
The devoicing of voiced fricatives
,”
J. Phonetics
6
(
2
),
95
102
.
23.
Hughes
,
G. W.
, and
Halle
,
M.
(
1956
). “
Spectral properties of fricative consonants
,”
J. Acoust. Soc. Am.
28
(
2
),
303
310
.
24.
Hunter
,
L. L.
,
Monson
,
B. B.
,
Moore
,
D. R.
,
Dhar
,
S.
,
Wright
,
B. A.
,
Munro
,
K. J.
,
Zadeh
,
L. M.
,
Blankenship
,
C. M.
,
Stiepan
,
S. M.
, and
Siegel
,
J. H.
(
2020
). “
Extended high frequency hearing and speech perception implications in adults and children
,”
Hear. Res.
397
,
107922
.
25.
Ibrahim
,
R. A.
, and
Bruce
,
I. C.
(
2010
). “
Effects of peripheral tuning on the auditory nerve's representation of speech envelope and temporal fine structure cues
,” in
The Neurophysiological Bases of Auditory Perception
(
Springer
,
New York
), pp.
429
438
.
26.
Jassem
,
W.
(
1979
). “
Classification of fricative spectra using statistical discriminant functions
,” in
Frontiers of Speech Communication Research
(Academic Press, New York), pp.
77
91
.
27.
Jesus
,
L. M. T.
, and
Shadle
,
C. H.
(
2002
). “
A parametric study of the spectral characteristics of European Portuguese fricatives
,”
J. Phonetics
30
,
437
464
.
28.
Jongman
,
A.
,
Wayland
,
R.
, and
Wong
,
S.
(
2000
). “
Acoustic characteristics of English fricatives
,”
J. Acoust. Soc. Am.
108
(
3
),
1252
1263
.
29.
Joris
,
P.
,
Schreiner
,
C.
, and
Rees
,
A.
(
2004
). “
Neural processing of amplitude-modulated sounds
,”
Physiol. Rev.
84
(
2
),
541
577
.
30.
Kiang
,
N.
, and
Moxon
,
E.
(
1974
). “
Tails of tuning curves of auditory‐nerve fibers
,”
J. Acoust. Soc. Am.
55
(
3
),
620
630
.
31.
Kim
,
D. O.
,
Carney
,
L.
, and
Kuwada
,
S.
(
2020
). “
Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body
,”
J. Neurophysiol.
124
(
4
),
1198
1215
.
32.
Kim
,
D. O.
,
Zahorik
,
P.
,
Carney
,
L. H.
,
Bishop
,
B. B.
, and
Kuwada
,
S.
(
2015
). “
Auditory distance coding in rabbit midbrain neurons and human perception: Monaural amplitude modulation depth as a cue
,”
J. Neurosci.
35
(
13
),
5360
5372
.
33.
Klatt
,
D. H.
(
1976
). “
Linguistic uses of segmental duration in English: Acoustic and perceptual evidence
,”
J. Acoust. Soc. Am.
59
(
5
),
1208
1221
.
34.
Kohavi
,
R.
(
1995
). “
A study of cross-validation and bootstrap for accuracy estimation and model selection
,” in
the International Joint Conference on Artifcial Intelligence (IJCAI)
, Montreal, Canada.
35.
Krishna
,
B. S.
, and
Semple
,
M. N.
(
2000
). “
Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus
,”
J. Neurophysiol.
84
(
1
),
255
273
.
36.
Ladefoged
,
P.
(
1971
).
Preliminaries to Linguistic Phonetics
(
University of Chicago Press
,
Chicago
).
37.
Ladefoged
,
P.
, and
Maddieson
,
I.
(
1996
).
Sounds of the World's Languages
(
Wiley-Blackwell
,
Hoboken, NJ
).
38.
Lago
,
S.
,
Scharinger
,
M.
,
Kronrod
,
Y.
, and
Idsardi
,
W. J.
(
2015
). “
Categorical effects in fricative perception are reflected in cortical source information
,”
Brain Lang.
143
,
52
58
.
39.
Langner
,
G.
(
1992
). “
Periodicity coding in the auditory system
,”
Hear. Res.
60
(
2
),
115
142
.
40.
Levy
,
S. C.
,
Freed
,
D. J.
,
Nilsson
,
M.
,
Moore
,
B. C.
, and
Puria
,
S.
(
2015
). “
Extended high-frequency bandwidth improves reception of speech in spatially separated masking speech
,”
Ear Hear.
36
(
5
),
e214
e224
.
41.
Liberman
,
M. C.
(
1978
). “
Auditory-nerve response from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
(
2
),
442
455
.
42.
Liberman
,
M. C.
,
Epstein
,
M. J.
,
Cleveland
,
S. S.
,
Wang
,
H.
, and
Maison
,
S. F.
(
2016
). “
Toward a differential diagnosis of hidden hearing loss in humans
,”
PLoS One
11
(
9
),
e0162726
.
43.
Lippmann
,
R. P.
(
1996
). “
Accurate consonant perception without mid-frequency speech energy
,”
IEEE Trans. Speech Audio Process.
4
(
1
),
1
66
.
44.
Maddieson
,
I.
(
1984
).
Patterns of Sounds
(
Cambridge University Press
,
Cambridge, UK
).
45.
Maddieson
,
I.
(
1991
). “
Testing the universality of phonological generalizations with a phonetically specified segment database: Results and limitations
,”
Phonetica
48
(
2-4
),
193
206
.
46.
McMurray
,
B.
, and
Jongman
,
A.
(
2011
). “
What information is necessary for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations
,”
Psychol. Rev.
118
(
2
),
219
246
.
47.
Meyer
,
B.
,
Jürgens
,
T.
,
Wesker
,
T.
,
Brand
,
T.
, and
Kollmeier
,
B.
(
2010
). “
Human phoneme recognition depending on speech-intrinsic variability
,”
J. Acoust. Soc. Am.
128
,
3126
3141
.
48.
Miller
,
R. L.
,
Schilling
,
J. R.
,
Franck
,
K. R.
, and
Young
,
E. D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
(
6
),
3602
3616
.
49.
Monson
,
B. B.
,
Rock
,
J.
,
Schulz
,
A.
,
Hoffman
,
E.
, and
Buss
,
E.
(
2019
). “
Ecological cocktail party listening reveals the utility of extended high-frequency hearing
,”
Hear. Res.
381
,
107773
.
50.
Moore
,
D.
,
Hunter
,
L.
, and
Munro
,
K.
(
2017
). “
Benefits of extended high-frequency audiometry for everyone
,”
Hear. J.
70
(
3
),
50
52
.
51.
Moser
,
T.
, and
Beutner
,
D.
(
2000
). “
Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse
,”
Proc. Natl. Acad. Sci. U.S.A.
97
(
2
),
883
888
.
52.
Narayanan
,
S. S.
,
Alwan
,
A. A.
, and
Haker
,
K.
(
1995
). “
An articulatory study of fricative consonants using magnetic resonance imaging
,”
J. Acoust. Soc. Am.
98
(
3
),
1325
1347
.
53.
Nelson
,
P. C.
, and
Carney
,
L. H.
(
2004
). “
A phenomenological model of peripheral and central neural responses to amplitude-modulated tones
,”
J. Acoust. Soc. Am.
116
(
4
),
2173
2186
.
54.
Nelson
,
P. C.
, and
Carney
,
L. H.
(
2007
). “
Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus
,”
J. Neurophysiol.
97
(
1
),
522
539
.
55.
Osses Vecchi
,
A.
,
Varnet
,
L.
,
Carney
,
L. H.
,
Dau
,
T.
,
Bruce
,
I. C.
,
Verhulst
,
S.
, and
Majdak
,
P.
(
2022
). “
A comparative study of eight human auditory models of monaural processing
,”
Acta Acust.
6
,
17
.
56.
Pienkowski
,
M.
(
2017
). “
On the etiology of listening difficulties in noise despite clinically normal audiograms
,”
Ear Hear.
38
(
2
),
135
148
.
57.
Pisoni
,
D. B.
, and
Luce
,
P. A.
(
1986
). “
Speech perception: Research, theory and the principal issues
,” in
Pattern Recognition by Humans and Machines: Speech Perception
(
Academic Press
,
Boston, MA
), Vol.
1
, pp.
1
50
.
58.
Polspoel
,
S.
,
Kramer
,
S. E.
,
van Dijk
,
B.
, and
Smits
,
C.
(
2022
). “
The importance of extended high-frequency speech information in the recognition of digits, words, and sentences in quiet and noise
,”
Ear Hear.
43
(
3
),
913
920
.
59.
Proctor
,
M. I.
,
Shadle
,
C. H.
, and
Iskarous
,
K.
(
2010
). “
Pharyngeal articulation in the production of voiced and voiceless fricatives
,”
J. Acoust. Soc. Am.
127
(
3
),
1507
1518
.
60.
Raman
,
I. M.
,
Zhang
,
S.
, and
Trussell
,
L. O.
(
1994
). “
Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling
,”
J. Neurosci.
14
(
8
),
4998
5010
.
61.
Rhode
,
W. S.
(
1971
). “
Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique
,”
J. Acoust. Soc. Am.
49
(
4B
),
1218
1231
.
62.
Sachs
,
M. B.
, and
Abbas
,
P. J.
(
1974
). “
Rate versus level functions for auditory‐nerve fibers in cats: Tone‐burst stimuli
,”
J. Acoust. Soc. Am.
56
(
6
),
1835
1847
.
63.
Schreiner
,
C. E.
, and
Winer
,
J. A.
(
2005
).
The Inferior Colliculus
(
Springer
,
New York
).
64.
Schroeder
,
M. R.
(
1968
). “
Period histogram and product spectrum: New methods for fundamental‐frequency measurement
,”
J. Acoust. Soc. Am.
43
(
4
),
829
834
.
65.
Shadle
,
C.
(
1985
). “
The acoustics of fricative consonants
,” Ph.D. dissertation,
MIT
,
Cambridge, MA
.
66.
Shadle
,
C. H.
(
1990
).
Articulatory-Acoustic Relationships in Fricative Consonants Speech Production and Speech Modelling
(
Springer
,
New York
), pp.
187
209
.
67.
Shadle
,
C. H.
,
Badin
,
P.
, and
Mouliner
,
A.
(
1992
). “
Towards the spectral characteristics of fricative consonants
,” in
Twelfth International Congress of Phonetic Sciences
, Aix-en-Provence, France, pp.
42
45
.
68.
Shera
,
C. A.
,
Guinan
,
J. J.
, and
Oxenham
,
A. J.
(
2002
). “
Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements
,”
Proc. Natl. Acad. Sci. U.S.A.
99
(
5
),
3318
3323
.
69.
Silbert
,
N.
, and
de Jong
,
K.
(
2008
). “
Focus, prosodic context, and phonological feature specification: Patterns of variation in fricative production
,”
J. Acoust. Soc. Am.
123
(
5
),
2769
2779
.
70.
Stevens
,
K. N.
(
1998
).
Acoustic Phonetics
, Current Studies in Linguistics 30 (
MIT Press
,
Cambridge, MA
).
71.
Stevens
,
K. N.
,
Blumstein
,
S. E.
,
Glicksman
,
L.
,
Burton
,
M.
, and
Kurowski
,
K.
(
1992
). “
Acoustic and perceptual characteristics of voicing in fricatives and fricative clusters
,”
J. Acoust. Soc. Am.
91
(
5
),
2979
3000
.
72.
Strevens
,
P.
(
1960
). “
Spectra of fricative noise in human speech
,”
Lang. Speech
3
(
1
),
32
49
.
73.
Vitela
,
A. D.
,
Monson
,
B. B.
, and
Lotto
,
A. J.
(
2015
). “
Phoneme categorization relying solely on high-frequency energy
,”
J. Acoust. Soc. Am.
137
(
1
),
EL65
EL70
.
74.
von Helmholtz
,
H.
(
1867
).
Handbuch der physiologischen Optik: Mit 213 in den Text eingedruckten Holzschnitten und 11 Tafeln
(Handbook of Physiological Optics) (
Leopold Voss
,
Leipzig, Germany
), Vol.
9
.
75.
Wagner
,
A.
,
Ernestus
,
M.
, and
Cutler
,
A.
(
2006
). “
Formant transitions in fricative identification: The role of native fricative inventory
,”
J. Acoust. Soc. Am.
120
(
4
),
2267
2277
.
76.
Westerman
,
L. A.
, and
Smith
,
R. L.
(
1984
). “
Rapid and short-term adaptation in auditory nerve responses
,”
Hear. Res.
15
(
3
),
249
260
.
77.
WHO
(
2008
).
Grades of Hearing Impairment
(
World Health Organization
,
Geneva, Switzerland
).
78.
Woods
,
D. L.
,
Yund
,
E. W.
,
Herron
,
T. J.
, and
Cruadhlaoich
,
M. A. U.
(
2010
). “
Consonant identification in consonant-vowel-consonant syllables in speech-spectrum noise
,”
J. Acoust. Soc. Am.
127
(
3
),
1609
1623
.
79.
Yates
,
G. K.
(
1990
). “
Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions
,”
Hear. Res.
50
(
1-2
),
145
162
.
80.
Yates
,
G. K.
,
Winter
,
I. M.
, and
Robertson
,
D.
(
1990
). “
Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range
,”
Hear. Res.
45
(
3
),
203
219
.
81.
Young
,
E. D.
, and
Sachs
,
M. B.
(
1979
). “
Representation of steady‐state vowels in the temporal aspects of the discharge patterns of populations of auditory‐nerve fibers
,”
J. Acoust. Soc. Am.
66
(
5
),
1381
1403
.
82.
Zadeh
,
L. M.
,
Silbert
,
N. H.
,
Sternasty
,
K.
,
Swanepoel
,
D. W.
,
Hunter
,
L. L.
, and
Moore
,
D. R.
(
2019
). “
Extended high-frequency hearing enhances speech perception in noise
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
47
),
23753
23759
.
83.
Zilany
,
M. S.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2014
). “
Updated parameters and expanded simulation options for a model of the auditory periphery
,”
J. Acoust. Soc. Am.
135
(
1
),
283
286
.
84.
Zilany
,
M. S.
,
Bruce
,
I. C.
,
Nelson
,
P. C.
, and
Carney
,
L. H.
(
2009
). “
A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics
,”
J. Acoust. Soc. Am.
126
(
5
),
2390
2412
.
You do not currently have access to this content.