Although echolocation is classically associated with bats and dolphins, many animals produce ultrasonic and/or click-like signals to potentially navigate their environment. Shrews (Soricidae) are thought to rely on ultrasonic signals for echo-orientation, producing both ultrasonic click-like signals and tonal twittering signals. Recently, the role of ultrasonic clicks in shrew echo-orientation has been questioned, as these clicks have been proposed to be artifacts of shrews moving throughout their environment. By combining infrared video and ultrasonic audio recordings, we investigated the acoustic signals made by shrews (Blarina brevicauda) during different periods of locomotion. We hypothesized that if shrews are using ultrasonic vocalizations as a sensory mechanism, they will display head scanning behavior while emitting clicks that share key characteristics with other known echolocating animals. Our results show that B. brevicauda predominantly emit ultrasonic clicks rather than ultrasonic twittering calls while exploring a new environment, with clicks having the following characteristics: less than 120 μs in duration, median peak frequency of 26.9 kHz, and median bandwidth of 22.9 kHz. Across individuals we found no significant difference in peak frequency. Our results indicate that shrews emit ultrasonic clicks in novel environments which further supports the hypothesis of echo-orientation or echolocation in shrews.

1.
W. W. L.
Au
,
The Sonar of Dolphins
(
Springer Science & Business Media
,
Berlin, Germany
,
1993
), pp.
1
4
.
2.
J.
Thomas
,
C.
Moss
, and
M.
Vater
,
Echolocation in Bats and Dolphins
(
University of Chicago Press
,
Chicago, IL
,
2004
), pp.
xiii
xxvii
.
3.
A.
Surlykke
,
P. E.
Nachtigall
,
R. R.
Fay
, and
A. N.
Popper
,
Biosonar
(
Springer-Verlag
,
Berlin, Germany
,
2014
), pp.
1
9
.
4.
G.
Neuweiler
,
The Biology of Bats
(
Oxford University Press
,
Oxford, England
,
2000
), pp.
140
206
.
5.
T. W.
Cranford
,
M.
Amundin
, and
K. S.
Norris
, “
Functional morphology and homology in the odontocete nasal complex: Implication for sound generation
,”
J. Morphol.
228
,
223
285
(
1996
).
6.
P. T.
Madsen
,
D. A.
Carder
,
W. W. L.
Au
,
P. E.
Nachtigall
,
B.
Mohl
, and
S. H.
Ridgway
, “
Sound production in neonate sperm whales
,”
J. Acoust. Soc. Am.
113
,
2988
2991
(
2003
).
7.
S. A.
Kick
, “
Target-detection by the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol.
145
,
431
435
(
1982
).
8.
W. W. L.
Au
,
K. J.
Benoit-Bird
, and
R. A.
Kastelein
, “
Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises
,”
J. Acoust. Soc. Am.
121
,
3954
3962
(
2007
).
9.
J. A.
Simmons
,
W. A.
Lavender
,
B. A.
Lavender
,
C. A.
Doroshow
,
S. W.
Kiefer
,
R.
Livingston
,
A. C.
Scarlet
, and
D. E.
Crowley
, “
Target structure and echo spectral discrimination by echolocating bats
,”
Science
186
,
1130
1132
(
1974
).
10.
D. L.
Renaud
and
A. N.
Popper
, “
Sound localization by the bottlenose porpoise, Tursiops truncatus
,”
J. Exp. Biol.
63
,
569
585
(
1975
).
11.
J. A.
Simmons
,
S. A.
Kick
,
B. D.
Lawrence
,
C.
Hale
,
C.
Bard
, and
B.
Escudié
, “
Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol.
153
,
321
330
(
1983
).
12.
B. K.
Branstetter
,
S. J.
Mevissen
,
L. M.
Herman
,
A. A.
Pack
, and
S. P.
Roberts
, “
Horizontal angular discrimination by an echolocating bottlenose dolphin Tursiops truncates
,”
Bioacoustics
14
,
15
34
(
2003
).
13.
W. W. L.
Au
,
R. W.
Floyd
,
R. H.
Penner
, and
A. E.
Murchison
, “
Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open water
,”
J. Acoust. Soc. Am
56
,
1280
1290
(
1974
).
14.
D.
Russo
,
L.
Ancilotto
, and
G.
Jones
, “
Bats are still not birds in the digital era: Echolocation call variation and why it matters for bat species identification
,”
Can. J. Zool.
96
,
63
78
(
2018
).
15.
K. S.
Norris
,
J. H.
Prescott
,
P. V.
Asa-Dorian
, and
P.
Perkins
, “
An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus (Montagu)
,”
Biol. Bull
120
,
163
176
(
1961
).
16.
G.
Jones
and
J. M. V.
Rayner
, “
Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae)
,”
Behav. Ecol. Sociobiol.
25
,
183
191
(
1989
).
17.
A.
Surlykke
and
C. F.
Moss
, “
Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory
,”
J. Acoust. Soc. Am.
108
,
2419
2429
(
2000
).
18.
M. J.
Wohlgemuth
,
N. B.
Kothari
, and
C. F.
Moss
, “
Action enhances acoustic cues for 3-D target localization by echolocating bats
,”
PLoS Biol.
14
(
9
),
e1002544
(
2016
).
19.
S.
Brinklov
,
M. B.
Fenton
, and
J. M.
Ratcliff
, “
Echolocation in Oilbirds and swiftlets
,”
Front. Physiol.
4
,
123
(
2013
).
20.
J. H.
Fullard
,
R. M. R.
Barclay
, and
D. W.
Thomas
, “
Echolocation in free-flying atiu swiftlets (Aerodramus sawtelli)
,”
Biotropica
25
,
334
339
(
1993
).
21.
D. R.
Griffin
and
R. A.
Suthers
, “
Sensitivity of echolocation in cave swiftlets
,”
Biol. Bull.
139
,
495
501
(
1970
).
22.
R. B.
Coles
,
M.
Konishi
, and
J. D.
Pettigrew
, “
Hearing and echolocation in the Australian grey swiftlet, Collocalia spodiopygia
,”
J. Exp. Biol.
129
,
365
371
(
1987
).
23.
M.
Maust-Mohl
,
J.
Soltis
, and
D.
Reiss
, “
Underwater click train production by the hippopotamus (Hippopotamus amphibius) suggests an echo-ranging function
,”
Behaviour
155
,
231
251
(
2018
).
24.
K.
He
,
Q.
Liu
,
D.-M.
Xu
,
F.-Y.
Qi
,
J.
Bai
,
S.-W.
He
,
P.
Chen
,
X.
Zhou
,
W.-Z.
Cai
,
Z.-Z.
Chen
, and
Z.
Liu
, “
Echolocation in soft-furred tree mice
,”
Science
372
,
6548
(
2021
).
25.
C. V.
Portfors
, “
Types and functions of ultrasonic vocalizations in laboratory rats and mice
,”
J. Am. Assoc. Lab. Anim. Sci.
46
,
28
34
(
2007
).
26.
M. L.
Dent
,
R. R.
Fay
, and
A. N.
Popper
,
Rodent Bioacoustics
, Springer Handbook of Auditory Research, Vol. 67 (
Springer
,
Berlin
,
2018
).
27.
K. R.
Coffey
,
R. E.
Marx
, and
J. F.
Neumaier
, “
DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations
,”
Neuropsychopharmacol.
44
,
859
868
(
2019
).
28.
J.
Thiagavel
,
S. E.
Santana
, and
J. M.
Ratcliffe
, “
Body size predicts echolocation call peak frequency better than gape height in vespertilionid bats
,”
Sci. Rep.
7
,
828
(
2017
).
29.
A.
Fais
,
M.
Johnson
,
M.
Wilson
,
N.
Aguilar Soto
, and
P. T.
Madsen
, “
Sperm whale predator-prey interactions involve chasing and buzzing, but no acoustic stunning
,”
Sci. Rep.
6
,
1
13
(
2016
).
30.
J. M.
Ratcliffe
,
C. P.
Elemans
,
L.
Jakobsen
, and
A.
Surlykke
, “
How the bat got its buzz
,”
Biol. Lett.
9
,
20121031
(
2013
).
31.
W. J.
Platt
, “
Metabolic rates of short-tailed shrews
,”
Physiol. Zool.
47
,
75
90
(
1974
).
32.
W. J.
Platt
, “
The social organization and territoriality of short-tailed shrew (Blarina brevicauda) populations in old-field habitats
,”
Anim. Behav.
24
,
305
318
(
1976
).
33.
N. C.
Michielsen
, “
Intraspecific and interspecific competition in the shrews Sorex araneus L. and S. minutus L.
,”
Arch. Néerlandaises Zool
17
,
73
174
(
1966
).
34.
J.
Nosek
,
O.
Kožuch
, and
J.
Chmela
, “
Contribution to the knowledge of home range in common shrew Sorex araneus L.
,”
Oecologia
9
,
59
63
(
1972
).
35.
L. L.
Getz
and
B.
McGuire
, “
Factors influencing movement distances and home ranges of the short-tailed shrew (Blarina brevicauda)
,”
Northeast. Nat.
15
,
293
302
(
2008
).
36.
E.
Gould
,
N. C.
Negus
, and
A.
Novick
, “
Evidence for echolocation in shrews
,”
J. Exp. Zool.
156
,
19
37
(
1964
).
37.
S.
Churchfield
,
The Natural History of Shrews
(
Cornell University Press
,
Ithaca, NY
,
1990
), pp.
1
178
.
38.
K. A.
Forsman
and
M. G.
Malmquist
, “
Evidence for echolocation in the common shrew, Sorex araneus
,”
J. Zool. London
216
,
655
662
(
1988
).
39.
T. E.
Tomasi
, “
Echolocation by the short-tailed shrew Blarina brevicauda
,”
J. Mamm.
60
,
751
759
(
1979
).
40.
B. M.
Siemers
,
G.
Schauermann
,
H.
Turni
, and
S.
von Merten
, “
Why do shrews twitter? Communication or simple echo-based orientation
,”
Biol. Lett.
5
,
593
596
(
2009
).
41.
L.
Sanchez
,
S. D.
Ohdachi
,
A.
Kawahara
,
L. M.
Echenique-Diaz
,
S.
Maruyama
, and
M.
Kawata
, “
Acoustic emissions of Sorex unguiculatus (Mammalia: Soricidae): Assessing the echo-based orientation hypothesis
,”
Ecol. Evol.
9
,
2629
2639
(
2019
).
42.
S.
von Merten
and
B. M.
Siemers
, “
Shrew twittering call rate is high in novel environments—A lab-study
,”
Mamm. Res.
65
,
469
479
(
2020
).
43.
S.
Zsebők
,
D.
Czaban
,
J.
Farkas
,
B. M.
Siemers
, and
S.
von Merten
, “
Acoustic species identification of shrews: Twittering calls for monitoring
,”
Ecol.l Inform.
27
,
1
10
(
2015
).
44.
J. P.
Rood
, “
Habits of the short-tailed shrew in captivity
,”
J. Mamm.
39
,
499
507
(
1958
).
45.
R. S.
Sikes
and
the Animal Care and Use Committee of the American Society of Mammalogists
, “
2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education
,”
J. Mammal.
97
,
663
688
(
2016
).
46.
R Core Team
,
R: A Language and Environment for Statistical Computing
(
R Foundation for Statistical Computing
,
Vienna, Austria
,
2023
), https://www.R-project.org/ (Last viewed December 15, 2022).
47.
D. H.
Ogle
,
J. C.
Doll
,
A. P.
Wheeler
, and
A.
Dinno
, “
FSA: Simple fisheries stock assessment methods
.”
R package version 0.9.4
(
2023
), https://CRAN.R-project.org/package=FSA (Last viewed December 15, 2022).
48.
Y.
Yovel
,
M.
Geva-Sagiv
, and
N.
Ulanovsky
, “
Click-based echolocation in bats: Not so primitive after all
,”
J. Comp. Physiol. A
197
,
515
530
(
2011
).
49.
J. W.
Bradbury
and
S. L.
Vehrencamp
,
Principles of Animal Communication
(
Sinauer Associates
,
Sunderland, MA
,
1998
), pp.
19
63
.
You do not currently have access to this content.