Equations describing acoustic streaming in soft, porous media driven by focused ultrasound are derived based on the assumption that acoustic waves pass through the porous material as if it were homogeneous. From these equations, a model that predicts the time-averaged flow on the macroscopic scale, as well as the advective transport of the trace components, is created. The model is used to perform simulations for different shapes of the focused ultrasound beam. For a given shape, and using the paraxial approximation for the ultrasound, the acoustic streaming is found to be linearly proportional to the applied ultrasound intensity, to the permeability of the porous material and to the attenuation coefficient, and inversely proportional to the liquid viscosity. Results from simulations are compared to a simplified expression stating that the dimensionless volumetric liquid flux is equal to the dimensionless acoustic radiation force. This approximation for the acoustic streaming is found to be reasonable near the beam axis for focused ultrasound beam shapes that are long in the axial direction, compared to their width. Finally, a comparison is made between the model and experimental results on acoustic streaming in a gel, and good agreement is found.

1.
Afadzi
,
M.
,
Myhre
,
O. F.
,
Yemane
,
P. T.
,
Bjørkøy
,
A.
,
Torp
,
S. H.
,
van Wamel
,
A.
,
Lelu
,
S.
,
Angelsen
,
B. A. J.
, and
de Lange Davies
,
C.
(
2021
). “
Effect of acoustic radiation force on the distribution of nanoparticles in solid tumors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
68
(
3
),
432
445
.
2.
Brinkman
,
H. C.
(
1949
). “
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
,”
Appl. Sci. Res.
1
,
27
34
.
3.
El Ghamrawy
,
A.
(
2019
). “
Acoustic streaming in soft tissue-mimicking materials
,” Ph.D. thesis,
Department of Bioengineering, Imperial College London
, London, UK.
4.
El Ghamrawy
,
A.
,
de Comtes
,
F.
,
Koruk
,
H.
,
Mohammed
,
A.
,
Jones
,
J. R.
, and
Choi
,
J. J.
(
2019
). “
Acoustic streaming in a soft tissue microenvironment
,”
Ultrasound Med. Biol.
45
(
1
),
208
217
.
5.
Gjennestad
,
M. A.
,
Winkler
,
M.
, and
Hansen
,
A.
(
2020
). “
Pore network modeling of the effects of viscosity ratio and pressure gradient on steady-state incompressible two-phase flow in porous media
,”
Transp. Porous Med.
132
(
2
),
355
379
.
6.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
(
1987
).
Fluid Mechanics, 6 of Course of Theoretical Physics
,
2nd ed.
, translated by
J. B.
Sykes
and
W. H.
Reid
. (
Butterworth–Heinemann
Oxford, UK
), Chap. I, p. 2 and Chap. II, pp.
44
46
.
7.
LeVeque
,
R. J.
(
2002
).
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
Cambridge, UK
).
8.
Lewis
,
G. K.
,
Schulz
,
Z. R.
,
Pannullo
,
S. C.
,
Southard
,
T. L.
, and
Olbricht
,
W. L.
(
2012
). “
Ultrasound-assisted convection-enhanced delivery to the brain in vivo with a novel transducer cannula assembly
,”
J. Neurosurg.
117
,
1128
1140
.
9.
Lighthill
,
J.
(
1978
). “
Acoustic streaming
,”
J. Sound Vib.
61
(
3
),
391
418
.
10.
Løvmo
,
M. K.
,
Yemane
,
P. T.
,
Bjørkøy
,
A.
,
Hansen
,
R.
,
Cleveland
,
R. O.
,
Angelsen
,
B. A.
, and
de Lange Davies
,
C.
(
2021
). “
Effect of acoustic radiation force on displacement of nanoparticles in collagen gels
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
68
,
416
431
.
11.
Manor
,
O.
(
2021
). “
Acoustic flow in porous media
,”
J. Fluid Mech.
920
,
A11
.
12.
Marston
,
P. L.
(
2011a
). “
Quasi-gaussian beam analytical basis and comparison with an alternative approach (L)
,”
J. Acoust. Soc. Am.
130
,
1091
1094
.
13.
Marston
,
P. L.
(
2011b
). “
Quasi-Gaussian Bessel-beam superposition: Application to the scattering of focused waves by spheres
,”
J. Acoust. Soc. Am.
129
,
1773
1782
.
14.
Nieminen
,
H. J.
,
Herranen
,
T.
,
Kananen
,
V.
,
Hacking
,
S. A.
,
Salmi
,
A.
,
Karppinen
,
P.
, and
Haeggstrom
,
E.
(
2012
). “
Ultrasonic transport of particles into articular cartilage and subchondral bone
,” in
2012 IEEE International Ultrasonics Symposium
, pp.
1869
1872
.
15.
Nieminen
,
H. J.
,
Ylitalo
,
T.
,
Suuronen
,
J.-P.
,
Rahunen
,
K.
,
Salmi
,
A.
,
Saarakkala
,
S.
,
Serimaa
,
R.
, and
Haeggström
,
E.
(
2015
). “
Delivering agents locally into articular cartilage by intense MHz ultrasound
,”
Ultrasound Med. Biol.
41
,
2259
2265
.
16.
Nyborg
,
W. L.
(
1953
). “
Acoustic streaming due to attenuated plane waves
,”
J. Acoust. Soc. Am.
25
(
1
),
68
75
.
17.
Olbricht
,
W.
,
Sistla
,
M.
,
Ghandi
,
G.
,
Lewis
,
G.
, and
Sarvazyan
,
A.
(
2013
). “
Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain
,”
J. Acoust. Soc. Am.
134
,
1569
1575
.
18.
O'Neil
,
H. T.
(
1949
). “
Theory of focusing radiators
,”
J. Acoust. Soc. Am.
21
,
516
526
.
19.
Prieur
,
F.
, and
Sapozhnikov
,
O. A.
(
2017
). “
Modeling of the acoustic radiation force in elastography
,”
J. Acoust. Soc. Am.
142
(
2
),
947
961
.
20.
Raghavan
,
R.
(
2018
). “
Theory for acoustic streaming in soft porous matter and its applications to ultrasound-enhanced convective delivery
,”
J. Ther. Ultrasound
6
(
1
),
6
.
21.
Sapozhnikov
,
O. A.
(
2012
). “
An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates
,”
Acoust. Phys.
58
(
1
),
41
47
.
22.
Snipstad
,
S.
,
Vikedal
,
K.
,
Maardalen
,
M.
,
Kurbatskaya
,
A.
,
Sulheim
,
E.
, and
de Lange Davies
,
C.
(
2021
). “
Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine
,”
Adv. Drug Deliv. Rev.
177
,
113847
.
23.
Treeby
,
B. E.
,
Budisky
,
J.
,
Wise
,
E. S.
,
Jaros
,
J.
, and
Cox
,
B. T.
(
2018
). “
Rapid calculation of acoustic fields from arbitrary continuous-wave sources
,”
J. Acoust. Soc. Am.
143
,
529
537
.
24.
Wessapan
,
T.
, and
Rattanadecho
,
P.
(
2020
). “
Acoustic streaming effect on flow and heat transfer in porous tissue during exposure to focused ultrasound
,”
Case Stud. Therm. Eng.
21
,
100670
.
25.
Whitaker
,
S.
(
1985
). “
A simple geometrical derivation of the spatial averaging theorem
,”
Chem. Eng. Educ.
19
(
1
),
18–21
and
50–52
.
26.
Whitaker
,
S.
(
1986
). “
Flow in porous media I: A theoretical derivation of Darcy's law
,”
Transp. Porous Med.
1
(
1
),
3
25
.
27.
Yuan
,
B.
(
2022
). “
Interstitial fluid streaming in deep tissue induced by ultrasound momentum transfer for accelerating nanoagent transport and controlling its distribution
,”
Phys. Med. Biol.
67
,
175011
.
You do not currently have access to this content.