An ocean-ice-acoustic coupled model is configured for the Beaufort Sea. The model uses outputs from a data assimilating global scale ice-ocean-atmosphere forecast to drive a bimodal roughness algorithm for generating a realistic ice canopy. The resulting range-dependent ice cover obeys observed roughness, keel number density, depth, and slope, and floe size statistics. The ice is inserted into a parabolic equation acoustic propagation model as a near-zero impedance fluid layer along with a model defined range-dependent sound speed profile. Year-long observations of transmissions at 35 Hz from the Coordinated Arctic Acoustic Thermometry Experiment and 925 Hz from the Arctic Mobile Observing System source were recorded over the winter of 2019–2020 on a free-drifting, eight-element vertical line array designed to vertically span the Beaufort duct. The ocean-ice-acoustic coupled model predicts receive levels that reasonably agree with the measurements over propagation ranges of 30–800 km. At 925 Hz, seasonal and sub-seasonal ocean and ice driven variations of propagation loss are captured in the data and reproduced in the model.

1.
Allard
,
R.
, and
Pelletier
,
B. R.
(
1987
).
Marine Science Atlas of the Beaufort Sea [Cartographic Material]: Geology and Geophysics
(
Geological Survey of Canada, Commission géologique du Canada
,
Ontario, Canada
).
2.
Ballard
,
M. S.
(
2019
). “
Three-dimensional acoustic propagation effects induced by the sea ice canopy
,”
J. Acoust. Soc. Am.
146
,
EL364
EL368
.
3.
Ballard
,
M. S.
,
Badiey
,
M.
,
Sagers
,
J. D.
,
Colosi
,
J. A.
,
Turgut
,
A.
,
Pecknold
,
S.
,
Lin
,
Y.-T.
,
Proshutinsky
,
A.
,
Krishfield
,
R.
, and
Worcester
,
P. F.
(
2020
). “
Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf
,”
J. Acoust. Soc. Am.
148
,
1663
1680
.
4.
Barclay
,
D. R.
, and
Buckingham
,
M. J.
(
2009
). “
On the shapes of natural sand grains
,”
J. Geophys. Res.
114
,
B02209
, https://doi.org/10.1029/2008JB005993.
5.
Bhatt
,
E. C.
(
2021
).
A Virtual Ocean Framework for Environmentally Adaptive, Embedded Acoustic Navigation on Autonomous Underwater Vehicles
(
Massachusetts Institute of Technology
,
Cambridge, MA
).
6.
Buck
,
B. M.
(
1966
).
Arctic Acoustic Transmission Loss and Ambient Noise
(
GM Defense Research Laboratories, Sea Operations Department
,
Santa Barbara, CA
).
7.
Buckingham
,
M. J.
(
1983
).
Noise in Electronic Devices and Systems
(
Wiley
,
New York
), p.
368
.
8.
Collins
,
M. D.
(
1990
). “
The rotated parabolic equation and sloping ocean bottoms
,”
J. Acoust. Soc. Am.
87
,
1035
1037
.
9.
Collins
,
M. D.
(
1993
). “
An energy‐conserving parabolic equation for elastic media
,”
J. Acoust. Soc. Am.
94
,
975
982
.
10.
Collins
,
M. D.
(
2012
). “
A single-scattering correction for the seismo-acoustic parabolic equation
,”
J. Acoust. Soc. Am.
131
,
2638
2642
.
11.
Collins
,
M. D.
(
2015
). “
Treatment of ice cover and other thin elastic layers with the parabolic equation method
,”
J. Acoust. Soc. Am.
137
,
1557
1563
.
12.
Collins
,
M. D.
, and
Dacol
,
D. K.
(
2000
). “
A mapping approach for handling sloping interfaces
,”
J. Acoust. Soc. Am.
107
,
1937
1942
.
13.
Collins
,
M. D.
,
Turgut
,
A.
,
Menis
,
R.
, and
Schindall
,
J. A.
(
2019
). “
Acoustic recordings and modeling under seasonally varying sea ice
,”
Sci. Rep.
9
,
8323
.
14.
Collins
,
M. D.
, and
Westwood
,
E. K.
(
1991
). “
A higher-order energy-conserving parabolic equation for range-dependent ocean depth, sound speed, and density
,”
J. Acoust. Soc. Am.
89
,
1068
1075
.
15.
Collis
,
J. M.
,
Frank
,
S. D.
,
Metzler
,
A. M.
, and
Preston
,
K. S.
(
2016
). “
Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers
,”
J. Acoust. Soc. Am.
139
,
2672
2682
.
16.
Cook
,
E.
,
Barclay
,
D.
, and
Richards
,
C.
(
2020
). “
Ambient noise in the Canadian arctic
,” in
Governance of Arctic Shipping: Rethinking Risk, Human Impacts and Regulation
, edited by
A.
Chircop
,
F.
Goerlandt
,
C.
Aporta
, and
R.
Pelot
(
Springer International
,
Cham
), pp.
105
133
.
17.
Diachok
,
O. I.
(
1976
). “
Effects of sea-ice ridges on sound propagation in the Arctic Ocean
,”
J. Acoust. Soc. Am.
59
,
1110
1120
.
18.
Duda
,
T.
(
2022
). (private communication).
19.
Duda
,
T. F.
(
2017
). “
Acoustic signal and noise changes in the Beaufort Sea Pacific Water duct under anticipated future acidification of Arctic Ocean waters
,”
J. Acoust. Soc. Am.
142
,
1926
1933
.
20.
Duda
,
T. F.
,
Zhang
,
W. G.
, and
Lin
,
Y.-T.
(
2021
). “
Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting
,”
J. Acoust. Soc. Am.
149
,
2117
2136
.
21.
Duda
,
T. F.
,
Zhang
,
W. G.
,
Lin
,
Y.-T.
, and
Newhall
,
A. E.
(
2019
). “
Long-range sound propagation in the Canada basin
,” in
Underwater Acoustics Conference and Exhibition (UACE2019)
, Crete, Greece.
22.
Einstein
,
A.
(
1905
). “
On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat
,”
Ann. Phys.
17
,
549
560
.
23.
Freitag
,
L.
,
Ball
,
K.
,
Partan
,
J.
,
Koski
,
P.
, and
Singh
,
S.
(
2015
). “
Long range acoustic communications and navigation in the Arctic
,” in
OCEANS 2015-MTS/IEEE Washington
(
IEEE
,
New York
), pp.
1
5
.
24.
Fricke
,
J. R.
(
1993
). “
Acoustic scattering from elemental Arctic ice features: Numerical modeling results
,”
J. Acoust. Soc. Am.
93
,
1784
1796
.
25.
Gavrilov
,
A. N.
, and
Mikhalevsky
,
P. N.
(
2006
). “
Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment
,”
J. Acoust. Soc. Am.
119
,
3694
3706
.
26.
Gordon
,
D.
, and
Bucker
,
H.
(
1984
).
Arctic Acoustic Propagation Model with Ice Scattering
(
Naval Ocean Systems Center
,
San Diego, CA
).
27.
Graupe
,
C. E.
,
van Uffelen
,
L. J.
,
Webster
,
S. E.
,
Worcester
,
P. F.
, and
Dzieciuch
,
M. A.
(
2019
). “
Preliminary results for glider localization in the Beaufort Duct using broadband acoustic sources at long range
,” in
OCEANS 2019 MTS/IEEE Seattle
, pp.
1
6
.
28.
Hamilton
,
E. L.
(
1980
). “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
.
29.
Hamilton
,
J. M.
(
1989
).
The Validation and Practical Applications of a Sub-Surface Mooring Model
(
Fisheries and Canada
,
Nova Scotia, Canada
).
30.
Harrison
,
C. H.
, and
Harrison
,
J. A.
(
1995
). “
A simple relationship between frequency and range averages for broadband sonar
,”
J. Acoust. Soc. Am.
97
,
1314
1317
.
31.
Hines
,
P. C.
,
Barclay
,
D. R.
,
Kessel
,
R.
,
Deveau
,
T. J.
,
Küsel
,
E. T.
, and
Hamilton
,
J. M.
(
2019
). “
ADSA Final Modelling Report
,” Technical Report (
GeoSpectrum Technologies
, Nova Scotia, Canada).
32.
Hope
,
G.
,
Sagen
,
H.
,
Storheim
,
E.
,
Hobaek
,
H.
, and
Freitag
,
L.
(
2017
). “
Measured and modeled acoustic propagation underneath the rough Arctic sea-ice
,”
J. Acoust. Soc. Am.
142
,
1619
1633
.
33.
Hu
,
S.
,
Sagen
,
H.
,
Storheim
,
E.
,
Chen
,
W.
, and
Yin
,
J.
(
2021
). “
Using ice-ocean environment from GECCO reanalysis into Bellhop to better understand sound propagation in the Fram Strait
,”
Proc. Mtgs. Acoust.
44
,
070038
.
34.
Hutchings
,
J. K.
, and
Rigor
,
I. G.
(
2012
). “
Role of ice dynamics in anomalous ice conditions in the Beaufort Sea during 2006 and 2007
,”
J. Geophys. Res.
117
,
C00E04
, https://doi.org/10.1029/2011JC007182.
35.
Hutt
,
D.
(
2012
). “
An overview of Arctic Ocean acoustics
,”
AIP Conf. Proc.
1495
,
56
68
.
36.
Kahaner
,
D.
,
Moler
,
C.
, and
Nash
,
S.
(
1989
).
Numerical Methods and Software
(
Prentice-Hall, Inc
.,
Englewood Cliffs, NJ
).
37.
Kudryashov
,
V.
(
1996
). “
Sound reflection from ice cover
,”
Acoustical Phys.
42
,
215
221
.
38.
Kuperman
,
W. A.
, and
Schmidt
,
H.
(
1986
). “
Rough surface elastic wave scattering in a horizontally stratified ocean
,”
J. Acoust. Soc. Am.
79
,
1767
1777
.
39.
Langleben
,
M.
(
1969
). “
Attenuation of sound in sea ice, 10–500 kHz
,”
J. Glaciol.
8
,
399
406
.
40.
Langleben
,
M.
, and
Pounder
,
E.
(
1963
). “
Elastic parameters of sea ice, ice and snow; properties, processes, and applications
,” in
Proceedings of a Conference Held at the Massachusetts Institute of Technology
, February 12–16, 1962 (
MIT Press
,
Cambridge, MA
), pp.
69
78
.
41.
Langleben
,
M. P.
(
1970
). “
Reflection of sound at the water–sea ice interface
,”
J. Geophys. Res.
75
,
5243
5246
, https://doi.org/10.1029/JC075i027p05243.
42.
Ledley
,
T. S.
(
1987
). “
Development of a new sea ice growth and lead parameterization
,”
Clim. Dyn.
2
,
91
100
.
43.
LePage
,
K.
, and
Schmidt
,
H.
(
1994
). “
Modeling of low‐frequency transmission loss in the central Arctic
,”
J. Acoust. Soc. Am.
96
,
1783
1795
.
44.
Lin
,
Y.-T.
, and
Duda
,
T. F.
(
2012
). “
A higher-order split-step Fourier parabolic-equation sound propagation solution scheme
,”
J. Acoust. Soc. Am.
132
,
EL61
EL67
.
45.
Mahoney
,
A. R.
,
Gough
,
A. J.
,
Langhorne
,
P. J.
,
Robinson
,
N. J.
,
Stevens
,
C. L.
,
Williams
,
M. M. J.
, and
Haskell
,
T. G.
(
2011
). “
The seasonal appearance of ice shelf water in coastal Antarctica and its effect on sea ice growth
,”
J. Geophys. Res.
116
,
C11032
, https://doi.org/10.1029/2011JC007060.
46.
Marsh
,
H.
, and
Mellen
,
R.
(
1963
). “
Underwater sound propagation in the Arctic Ocean
,”
J. Acoust. Soc. Am.
35
,
552
563
.
47.
Martin
,
S. B.
,
Borys
,
P.
,
Barclay
,
D. R.
,
Wilson
,
C. C.
,
Robinson
,
C.
,
Hamilton
,
J.
, and
Kessel
,
R.
(
2022
). “
Modelling Design and Performance of Drifting or Moored Vertical Line Array in the Arctic: CAATEX Drifter Data Analysis and Modelling, Final Report for Modelling Task Authorization Contract W7707-206555 TA5
,” Document 02336, Version 1.0, Technical report by JASCO Applied Sciences for DRDC Atlantic.
48.
McDougall
,
T. J.
, and
Barker
,
P. M.
(
2011
). “Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox,” SCOR/IAPSO WG127, pp.
1
28
.
49.
Mellen
,
R.
, and
Marsh
,
H.
(
1965
).
Underwater Sound in the Arctic Ocean
(
AVCO Marine Electronics Office
,
New London, CT
).
50.
Melling
,
H.
(
2022
). “
Sea-ice thickness on the northern Canadian polar shelf: A second look after 40 years
,”
Cryosphere Discuss.
16
(
8
),
1
24
.
51.
Metzler
,
A. M.
,
Moran
,
D.
,
Collis
,
J. M.
,
Martin
,
P.
, and
Siegmann
,
W. L.
(
2014
). “
A scaled mapping parabolic equation for sloping range-dependent environments
,”
J. Acoust. Soc. Am.
135
,
EL172
EL178
.
52.
Milne
,
A. R.
(
1960
). “
Shallow water under‐ice acoustics in Barrow Strait
,”
J. Acoust. Soc. Am.
32
,
1007
1016
.
53.
NCEI
(
2020
).
World Ocean Database
(
NOAA National Centers for Environmental Information
,
Stennis Space Center, MS
).
54.
Outing
,
D. A.
,
Siegmann
,
W. L.
,
Collins
,
M. D.
, and
Westwood
,
E. K.
(
2006
). “
Generalization of the rotated parabolic equation to variable slopes
,”
J. Acoust. Soc. Am.
120
,
3534
3538
.
55.
Pellerin
,
P.
,
Smith
,
G.
,
Testut
,
C.-E.
,
Surcel Colan
,
D.
,
Roy
,
F.
,
Reszka
,
M.
,
Dupont
,
F.
,
Lemieux
,
J.-F.
,
Beaudoin
,
C.
, and
He
,
Z.
(
2015
). “
The CONCEPTS Global Ice-Ocean Prediction System: Establishing an environmental prediction capability in Canada
,” in
EGU General Assembly Conference Abstracts
, p.
7170
.
56.
Pelletier
,
B. R.
(
1975
). “
Sediment Dispersal in the Southern Beaufort Sea, Beaufort Sea Project
” (
Department of the Environment
, Ontario, Canada).
57.
Perovich
,
D. K.
,
Grenfell
,
T. C.
,
Light
,
B.
,
Elder
,
B. C.
,
Harbeck
,
J.
,
Polashenski
,
C.
,
Tucker
,
W. B.
, III
, and
Stelmach
,
C.
(
2009
). “
Transpolar observations of the morphological properties of Arctic Sea ice
,”
J. Geophys. Res.
114
,
C00A04
, https://doi.org/10.1029/2008JC004892.
58.
Petrich
,
C.
, and
Eicken
,
H.
(
2010
). “
Growth, structure and properties of sea ice
,”
Sea Ice
2
,
23
77
.
59.
Planck
,
C. J.
,
Perovich
,
D. K.
, and
Light
,
B.
(
2020
). “
A Synthesis of observations and models to assess the time series of sea ice mass balance in the Beaufort Sea
,”
J. Geophys. Res. Oceans
125
,
e2019JC015833
, https://doi.org/10.1029/2019JC015833.
60.
Rajan
,
S. D.
,
Frisk
,
G. V.
,
Doutt
,
J. A.
, and
Sellers
,
C. J.
(
1993
). “
Determination of compressional wave and shear wave speed profiles in sea ice by crosshole tomography—Theory and experiment
,”
J. Acoust. Soc. Am.
93
,
721
738
.
61.
Shimeld
,
J.
,
Li
,
Q.
,
Chian
,
D.
,
Lebedeva-Ivanova
,
N.
,
Jackson
,
R.
,
Mosher
,
D.
, and
Hutchinson
,
D.
(
2016
). “
Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: Evidence for accelerated porosity reduction?
,”
Geophys. J. Int.
204
,
1
20
.
62.
Simon
,
B.
,
Isakson
,
M.
, and
Ballard
,
M.
(
2018
). “
Modeling acoustic wave propagation and reverberation in an ice covered environment using finite element analysis
,”
Proc. Mtgs. Acoust.
33
,
070002
.
63.
Smith
,
G. C.
, and
Fortin
,
A.-S.
(
2022
). “
Verification of eddy properties in operational oceanographic analysis systems
,”
Ocean Modell.
172
,
101982
.
64.
Smith
,
G. C.
,
Roy
,
F.
,
Reszka
,
M.
,
Surcel Colan
,
D.
,
He
,
Z.
,
Deacu
,
D.
,
Belanger
,
J. M.
,
Skachko
,
S.
,
Liu
,
Y.
, and
Dupont
,
F.
(
2016
). “
Sea ice forecast verification in the Canadian global ice ocean prediction system
,”
Q. J. R. Meteorol. Soc.
142
,
659
671
.
65.
Steiner
,
N.
,
Azetsu-Scott
,
K.
,
Galbraith
,
P.
,
Hamilton
,
J.
,
Hedges
,
K.
,
Hu
,
X.
,
Janjua
,
M.
,
Lambert
,
N.
,
Larouche
,
P.
, and
Lavoie
,
D.
(
2013
).
Climate Change Assessment in the Arctic Basin Part 1: Trends and Projections: A Contribution to the Aquatic Climate Change Adaptation Services Program
(
Fisheries and Oceans Canada, Nova Scotia, Canada
.
66.
Thiele
,
L.
,
Larsen
,
A.
, and
Nielsen
,
O. W.
(
1990
).
Underwater Noise Exposure from Shipping in Baffin Bay and Davis Strait
(
Greenland Environment Research Institute
,
Copenhagen, Denmark
).
67.
Urick
,
R.
(
1984
).
Ambient Sea Noise in the Ocean
(
Naval Sea Systems Command
,
Washington, DC
).
68.
Wadhams
,
P.
(
1981
). “
Sea-ice topography of the Arctic Ocean in the region 70 W to 25 E
,”
Philosoph. Trans. R. Soc. London, Ser. A: Math. Phys. Sci.
302
,
45
85
.
69.
Wadhams
,
P.
,
Hughes
,
N.
, and
Rodrigues
,
J.
(
2011
). “
Arctic sea ice thickness characteristics in winter 2004 and 2007 from submarine sonar transects
,”
J. Geophys. Res.
116
,
C00E02
, https://doi.org/10.1029/2011JC006982.
70.
Wadhams
,
P.
, and
Toberg
,
N.
(
2012
). “
Changing characteristics of arctic pressure ridges
,”
Polar Sci.
6
,
71
77
.
71.
Webster
,
S. E.
,
Freitag
,
L. E.
,
Lee
,
C. M.
, and
Gobat
,
J. I.
(
2015
). “
Towards real-time under-ice acoustic navigation at mesoscale ranges
,” in
2015 IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
New York
), pp.
537
544
.
72.
Woodgate
,
R. A.
(
2018
). “
Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data
,”
Prog. Oceanogr.
160
,
124
154
.
73.
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
, and
Sagen
,
H.
(
2020
). “
Ocean acoustics in the rapidly changing Arctic
,”
Acoust. Today
16
,
55
64
.
74.
Zedel
,
L.
,
Wang
,
Y.
,
Davidson
,
F.
, and
Xu
,
J.
(
2018
). “
Comparing ADCP data collected during a seismic survey off the coast of Newfoundland with analysis data from the CONCEPTS operational ocean model
,”
J. Oper. Oceanogr.
11
,
100
111
.
75.
Zhang
,
J.
,
Stern
,
H.
,
Hwang
,
B.
,
Schweiger
,
A.
,
Steele
,
M.
,
Stark
,
M.
, and
Graber
,
H. C.
(
2016
). “
Modeling the seasonal evolution of the Arctic Sea ice floe size distribution
,”
Elementa: Sci. Anthropocene
4
,
000126
.
You do not currently have access to this content.