The effect of elevation variation on sonic boom reflection is investigated using real terrain data. To this end, the full two-dimensional Euler equations are solved using finite-difference time-domain techniques. Numerical simulations are performed for two ground profiles of more than 10 km long, extracted from topographical data of hilly regions, and for two boom waves, a classical N-wave, and a low-boom wave. For both ground profiles, topography affects the reflected boom significantly. Wavefront folding due to terrain depression is notably highlighted. For the ground profile with mild slopes, the time signals of the acoustic pressure at the ground are, however, only slightly modified compared to the flat reference case, and the associated noise levels differ by less than 1 dB. With steep slopes, the contribution due to wavefront folding has a large amplitude at the ground. This results in an amplification of the noise levels: a 3 dB increase occurs at 1% of the positions along the ground surface, and a maximum of 5–6 dB is reached near the terrain depressions. These conclusions are valid for the N-wave and low-boom wave.

1.
Bauer
,
A. B.
, and
Bagley
,
C. J.
(
1970
). “
Sonic boom modeling—Investigation of topographical and atmospheric effects
,” McDonnel-Douglas Corp., Long Beach, CA, Rep. No. FAA-NO-70-10, pp.
1
212
.
2.
Blumrich
,
R.
,
Coulouvrat
,
F.
, and
Heimann
,
D.
(
2005
). “
Meteorologically induced variability of sonic-boom characteristics of supersonic aircraft in cruising flight
,”
J. Acoust. Soc. Am.
118
(
2
),
707
722
.
3.
Bogey
,
C.
, and
Bailly
,
C.
(
2004
). “
A family of low dispersive and low dissipative explicit schemes for flow and noise computations
,”
J. Comput. Phys.
194
,
194
214
.
4.
Candel
,
S.
(
1977
). “
Numerical solution of conservation equations arising in linear wave theory: Application to aeroacoustics
,”
J. Fluid Mech.
83
(
3
),
465
493
.
5.
Carr
,
A. N.
,
Lonzaga
,
J. B.
, and
Miller
,
S. A. E.
(
2022
). “
Numerical prediction of loudness metrics for N-waves and shaped sonic booms in kinematic turbulence
,”
J. Acoust. Soc. Am.
151
(
6
),
3580
3593
.
6.
Downs
,
R.
,
Page
,
J. T.
,
Gee
,
K. L.
,
Novakovich
,
D. J.
,
Anderson
,
M. C.
, and
Loubeau
,
A.
(
2022
). “
Sonic boom measurements: Practical implications considering ground effects, microphone installation, and weather hardening
,”
JASA Express Lett.
2
(
10
),
104001
.
7.
Dragna
,
D.
,
Emmanuelli
,
A.
,
Ollivier
,
S.
, and
Blanc-Benon
,
P.
(
2022a
). “
Sonic boom reflection over an isolated building and multiple buildings
,”
J. Acoust. Soc. Am.
151
(
6
),
3792
3806
.
8.
Dragna
,
D.
,
Emmanuelli
,
A.
,
Ollivier
,
S.
, and
Blanc-Benon
,
P.
(
2022b
). “
Sonic boom reflection over urban areas
,”
J. Acoust. Soc. Am.
152
(
6
),
3323
3339
.
9.
Emmanuelli
,
A.
,
Dragna
,
D.
,
Ollivier
,
S.
, and
Blanc-Benon
,
P.
(
2021
). “
Characterization of topographic effects on sonic boom reflection by resolution of the Euler equations
,”
J. Acoust. Soc. Am.
149
(
4
),
2437
2450
.
10.
Gainville
,
O.
(
2008
). “
Modélisation de la propagation atmosphérique des ondes infrasonores par une méthode de tracé de rayons non linéaire” (“Numerical modelling of atmospheric infrasound propagation using a nonlinear ray-tracing method”)
, Ph.D. thesis,
Ecole Centrale de Lyon
,
France
, No. 2008-07.
11.
Gal-Chen
,
T.
, and
Sommerville
,
R. C. J.
(
1975
). “
On the use of a coordinate transformation for the solution of the Navier-Stokes equations
,”
J. Comput. Phys.
17
,
209
228
.
12.
Leal
,
P. B. C.
,
Schrass
,
J. A.
,
Giblette
,
T. N.
,
Hunsaker
,
D. F.
,
Shen
,
H.
,
Logan
,
T. S.
, and
Hartl
,
D. J.
(
2021
). “
Effects of atmospheric profiles on sonic boom perceived level from supersonic vehicles
,”
AIAA J.
59
(
12
),
5020
5028
.
13.
Leatherwood
,
J. D.
,
Sullivan
,
B. M.
,
Sheperd
,
K. P.
,
McCurdy
,
D. A.
, and
Brown
,
S. A.
(
2002
). “
Summary of recent NASA studies of human response to sonic booms
,”
J. Acoust. Soc. Am.
111
(
1
),
586
598
.
14.
Leconte
,
R.
,
Chassaing
,
J. C.
,
Coulouvrat
,
F.
, and
Marchiano
,
R.
(
2022
). “
Propagation of classical and low booms through kinematic turbulence with uncertain parameters
,”
J. Acoust. Soc. Am.
151
(
6
),
4207
4227
.
15.
Loubeau
,
A.
, and
Coulouvrat
,
F.
(
2009
). “
Effects of meteorological variability on sonic boom propagation from hypersonic aircraft
,”
AIAA J.
47
(
11
),
2632
2641
.
16.
Loubeau
,
A.
,
Naka
,
Y.
,
Cook
,
B.
,
Sparrow
,
V.
, and
Morgenstern
,
J.
(
2015
). “
A new evaluation of noise metrics for sonic booms using existing data
,”
AIP Conf. Proc.
1685
,
0090015
.
17.
Maglieri
,
D.
,
Bobbitt
,
P.
,
Plotkin
,
K.
,
Shepherd
,
K.
,
Coen
,
P.
, and
Richwine
,
D.
(
2014
). “
Sonic boom: Six decades of research
,”
Technical Report NASA/SP-2014-622, L-20381, NF1676L-18333
(
NASA
,
Washington, DC
), pp.
1
539
.
18.
NASA
(
2022
). “
Quesst
,” X-59, NASA's low-boom flight demonstration, available at https://www.nasa.gov/X59/ (Last viewed June 1, 2023).
19.
Pawlowski
,
J.
,
Graham
,
D.
,
Boccadoro
,
C.
,
Coen
,
P.
, and
Maglieri
,
D.
(
2005
). “
Origins and overview of the shaped sonic boom demonstration program
,” in
43rd AIAA Aerospace Sciences Meeting and Exhibit
, 10–13 January, Reno, NV, AIAA-Paper No. 2005-5, pp.
1
14
.
20.
Piacsek
,
A. A.
(
2002
). “
Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts
,”
J. Acoust. Soc. Am.
111
(
1
),
520
529
.
21.
Pierce
,
A. D.
, and
Maglieri
,
D. J.
(
1972
). “
Effects of atmospheric irregularities on sonic-boom propagation
,”
J. Acoust. Soc. Am.
51
(
2
),
702
721
.
22.
Rallabhandi
,
S. K.
, and
Loubeau
,
A.
(
2019
). “
Summary of propagation cases of the second AIAA sonic boom prediction workshop
,”
J. Aircraft
56
(
3
),
876
895
.
23.
Scott
,
J. F.
,
Blanc-Benon
,
P.
, and
Gainville
,
O.
(
2017
). “
Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere
,”
Wave Motion
72
,
41
61
.
24.
Stevens
,
S. S.
(
1972
). “
Perceived level of noise by Mark VII and decibels (E)
,”
J. Acoust. Soc. Am.
51
(
2
),
575
601
.
25.
Stout
,
T. A.
,
Sparrow
,
V. W.
, and
Blanc-Benon
,
P.
(
2021
). “
Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence
,”
J. Acoust. Soc. Am.
149
(
5
),
3250
3260
.
26.
Yamashita
,
H.
, and
Obayashi
,
S.
(
2013
). “
Global sonic boom overpressure variation from seasonal temperature, pressure, and density gradients
,”
J. Aircraft
50
(
6
),
1933
1938
.
You do not currently have access to this content.