A fundamental challenge in acoustic data processing is to separate a measured time series into relevant phenomenological components. A given measurement is typically assumed to be an additive mixture of myriad signals plus noise whose separation forms an ill-posed inverse problem. In the setting of sensing elastic objects using active sonar, we wish to separate the early-time return from the object's geometry from late-time returns caused by elastic or compressional wave coupling. Under the framework of morphological component analysis (MCA), we compare two separation models using the short-duration and long-duration responses as a proxy for early-time and late-time returns. Results are computed for a broadside response using Stanton's elastic cylinder model as well as on experimental data taken from an in-air circular synthetic aperture sonar system, whose separated time series are formed into imagery. We find that MCA can be used to separate early and late-time responses in both the analytic and experimental cases without the use of time-gating. The separation process is demonstrated to be compatible with image reconstruction. The best separation results are obtained with a flexible, but computationally intensive, frame based signal model, while a faster Fourier transform based method is shown to have competitive performance.

1.
Afonso
,
M. V.
,
Bioucas-Dias
,
J. M.
, and
Figueiredo
,
M. A. T.
(
2010
). “
Fast image recovery using variable splitting and constrained optimization
,”
IEEE Trans. Image Process.
19
(
9
),
2345
2356
.
2.
Azimi-Sadjadi
,
M.
,
Charleston
,
S.
,
Wilbur
,
J.
, and
Dobeck
,
G.
(
1998
). “
A new time delay estimation in subbands for resolving multiple specular reflections
,”
IEEE Trans. Signal Process.
46
(
12
),
3398
3403
.
3.
Azimi-Sadjadi
,
M. R.
,
Wilbur
,
J.
, and
Dobeck
,
G. J.
(
1995
). “
Isolation of resonance in acoustic backscatter from elastic targets using adaptive estimation schemes
,”
IEEE J. Oceanic Eng.
20
(
4
),
346
353
.
4.
Blanford
,
T. E.
,
McKay
,
J. D.
,
Brown
,
D. C.
,
Park
,
J. D.
, and
Johnson
,
S. F.
(
2019
). “
Development of an in-air circular synthetic aperture sonar system as an educational tool
,”
Proc. Mtgs. Acoust.
36
(
1
),
070002
.
5.
Blonigen
,
F. J.
, and
Marston
,
P. L.
(
2000
). “
Backscattering enhancements for tilted solid plastic cylinders in water due to the caustic merging transition: Observations and theory
,”
J. Acoust. Soc. Am.
107
(
2
),
689
698
.
6.
Boyd
,
S.
,
Boyd
,
S. P.
, and
Vandenberghe
,
L.
(
2004
).
Convex Optimization
(
Cambridge University Press
,
Cambridge
).
7.
Carrara
,
W. G.
,
Goodman
,
R. S.
, and
Majewski
,
R. M.
(
1995
).
Spotlight Synthetic Aperture Radar Signal Processing Algorithms
(
Artech House
,
Norwood, MA
).
8.
Chen
,
S. S.
,
Donoho
,
D. L.
, and
Saunders
,
M. A.
(
2001
). “
Atomic decomposition by basis pursuit
,”
SIAM Rev.
43
(
1
),
129
159
.
9.
Cisse
,
M.
,
Bojanowski
,
P.
,
Grave
,
E.
,
Dauphin
,
Y.
, and
Usunier
,
N.
(
2017
). “
Parseval networks: Improving robustness to adversarial examples
,” in
International Conference on Machine Learning, PMLR
, pp.
854
863
.
10.
Claerbout
,
J. F.
(
1985
).
Imaging the Earth's Interior
(
Blackwell Science
,
Oxford
).
11.
Cook
,
D. A.
, and
Brown
,
D. C.
(
2009
). “
Analysis of phase error effects on stripmap SAS
,”
IEEE J. Oceanic Eng.
34
(
3
),
250
261
.
12.
Cowen
,
B.
,
Saridena
,
A. N.
, and
Choromanska
,
A.
(
2019
). “
LSALSA: Accelerated source separation via learned sparse coding
,”
Mach. Learn.
108
(
8
),
1307
1327
.
13.
Deligiannis
,
N.
,
Mota
,
J. F.
,
Cornelis
,
B.
,
Rodrigues
,
M. R.
, and
Daubechies
,
I.
(
2017
). “
Multi-modal dictionary learning for image separation with application in art investigation
,”
IEEE Trans. Image Process.
26
(
2
),
751
764
.
14.
Doerry
,
A. W.
(
2012
). “Basics of polar-format algorithm for processing synthetic aperture radar images,” Sandia National Laboratories, SAND2012-3369, May 2012.
15.
Donoho
,
D. L.
, and
Kutyniok
,
G.
(
2009
). “
Geometric separation using a wavelet-shearlet dictionary
,” in SAMPTA'09, Special Sesson on Geometric Multiscale Analysis, Marseille, France.
16.
Eckstein
,
J.
, and
Bertsekas
,
D. P.
(
1992
). “
On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators
,”
Math. Programming
55
(
1
),
293
318
.
17.
España
,
A. L.
,
Williams
,
K. L.
,
Plotnick
,
D. S.
, and
Marston
,
P. L.
(
2014
). “
Acoustic scattering from a water-filled cylindrical shell: Measurements, modeling, and interpretation
,”
J. Acoust. Soc. Am.
136
(
1
),
109
121
.
18.
Gipson
,
K.
, and
Marston
,
P. L.
(
1999
). “
Backscattering enhancements due to reflection of meridional leaky Rayleigh waves at the blunt truncation of a tilted solid cylinder in water: Observations and theory
,”
J. Acoust. Soc. Am.
106
,
1673
1680
.
19.
Gunderson
,
A. M.
,
España
,
A. L.
, and
Marston
,
P. L.
(
2017
). “
Spectral analysis of bistatic scattering from underwater elastic cylinders and spheres
,”
J. Acoust. Soc. Am.
142
(
1
),
110
115
.
20.
Guo
,
Y.
,
Guo
,
S.
,
Guo
,
K.
, and
Zhou
,
H.
(
2021
). “
Seismic data denoising under the morphological component analysis framework by dictionary learning
,”
Int. J. Earth Sci.
110
(
3
),
963
978
.
21.
Hall
,
B. R.
, and
Marston
,
P. L.
(
2022
). “
Backscattering by a tilted intermediate thickness cylindrical metal empty shell in water
,”
JASA Express Lett.
2
(
11
),
114001
.
22.
Hall
,
J. J.
,
Azimi-Sadjadi
,
M. R.
, and
Kargl
,
S. G.
(
2016
). “
Underwater UXO classification using matched subspace classifier with synthetic sparse dictionaries
,” in
OCEANS 2016 MTS/IEEE Monterey
, pp.
1
9
.
23.
Hall
,
J. J.
,
Azimi-Sadjadi
,
M. R.
,
Kargl
,
S. G.
,
Zhao
,
Y.
, and
Williams
,
K. L.
(
2019
). “
Underwater unexploded ordnance (UXO) classification using a matched subspace classifier with adaptive dictionaries
,”
IEEE J. Oceanic Eng.
44
(
3
),
739
752
.
24.
Hambric
,
S. A.
(
2006
). “
Structural acoustics tutorial–Part 1: Vibrations in structures
,”
Acoust. Today
2
(
4
),
21
33
.
25.
Han
,
D.
,
Kornelson
,
K.
,
Larson
,
D.
, and
Weber
,
E.
(
2007
).
Frames for Undergraduates
(
American Mathematical Society
,
Providence, RI
).
26.
Hwang
,
W.-L.
,
Huang
,
P.-T.
,
Kung
,
B.-C.
,
Ho
,
J.
, and
Jong
,
T.-L.
(
2019
). “
Frame-based sparse analysis and synthesis signal representations and Parseval K-SVD
,”
IEEE Trans. Signal Process.
67
(
12
),
3330
3343
.
27.
Jia
,
H.
,
Li
,
X.
, and
Meng
,
X.
(
2017
). “
Rigid and elastic acoustic scattering signal separation for underwater target
,”
J. Acoust. Soc. Am.
142
,
653
665
.
28.
Kargl
,
S. G.
, and
Marston
,
P. L.
(
1989
). “
Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations
,”
J. Acoust. Soc. Am.
85
(
3
),
1014
1028
.
29.
La Follett
,
J. R.
,
Williams
,
K. L.
, and
Marston
,
P. L.
(
2011
). “
Boundary effects on backscattering by a solid aluminum cylinder: Experiment and finite element model comparisons (L)
,”
J. Acoust. Soc. Am.
130
(
2
),
669
672
.
30.
Marston
,
T. M.
,
Marston
,
P. L.
, and
Williams
,
K. L.
(
2010
). “
Scattering resonances, filtering with reversible SAS processing, and applications of quantitative ray theory
,” in
Oceans 2010 MTS/IEEE Seattle
, pp.
1
9
.
31.
Meng
,
T.
,
Wang
,
D.
,
Jiao
,
J.
, and
Li
,
X.
(
2020
). “
Tunable Q-factor wavelet transform of acoustic emission signals and its application on leak location in pipelines
,”
Comput. Commun.
154
,
398
409
.
32.
Morse
,
S. F.
, and
Marston
,
P. L.
(
2002
). “
Meridional ray backscattering enhancements for empty truncated tilted cylindrical shells: Measurements, ray model, and effects of a mode threshold
,”
J. Acoust. Soc. Am.
112
(
4
),
1318
1326
.
33.
Morse
,
S. F.
,
Marston
,
P. L.
, and
Kaduchak
,
G.
(
1998
). “
High-frequency backscattering enhancements by thick finite cylindrical shells in water at oblique incidence: Experiments, interpretation, and calculations
,”
J. Acoust. Soc. Am.
103
(
2
),
785
794
.
34.
Nguyen
,
H. M.
,
Chen
,
J.
, and
Glover
,
G. H.
(
2022
). “
Morphological component analysis of functional MRI brain networks
,”
IEEE Trans. Biomed. Eng.
69
(
10
),
3193
3204
.
35.
Olshausen
,
B. A.
, and
Field
,
D. J.
(
1996
). “
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
,”
Nature
381
(
6583
),
607
609
.
36.
Pareige
,
P.
,
Maze
,
G.
,
Izbicki
,
J.
,
Ripoche
,
J.
, and
Rousselot
,
J.
(
1989
). “
Internal acoustical excitation of shells: Scholte and whispering gallery-type waves
,”
J. Appl. Phys.
65
(
7
),
2636
2644
.
37.
Parekh
,
A.
,
Selesnick
,
I. W.
,
Rapoport
,
D. M.
, and
Ayappa
,
I.
(
2015
). “
Detection of k-complexes and sleep spindles (DETOKS) using sparse optimization
,”
J. Neurosci. Meth.
251
,
37
46
.
38.
Peyré
,
G.
,
Fadili
,
J.
, and
Starck
,
J.-L.
(
2007
). “
Learning adapted dictionaries for geometry and texture separation
,” in
Wavelets XII, SPIE
, Vol.
6701
, pp.
640
651
.
39.
Peyré
,
G.
,
Fadili
,
J.
, and
Starck
,
J.-L.
(
2010
). “
Learning the morphological diversity
,”
SIAM J. Imag. Sci.
3
(
3
),
646
669
.
40.
Plotnick
,
D. S.
, and
Marston
,
P. L.
(
2016
). “
Multiple scattering, layer penetration, and elastic contributions to SAS images using fast reversible processing methods
,” in
European Conference on Synthetic Aperture Radar
, pp.
1
3
.
41.
Plotnick
,
D. S.
,
Marston
,
P. L.
, and
Marston
,
T. M.
(
2014
). “
Fast nearfield to farfield conversion algorithm for circular synthetic aperture sonar
,”
J. Acoust. Soc. Am.
136
(
2
),
EL61
EL66
.
42.
Reddy
,
G. R. S.
, and
Rao
,
R.
(
2019
). “
Oscillatory-plus-transient signal decomposition using TQWT and MCA
,”
J. Electron. Sci. Technol.
17
(
2
),
135
151
.
43.
Selesnick
,
I.
(
2014
). “
L1-norm penalized least squares with SALSA
,” http://cnx.org/content/m48933/ (Last viewed May 1, 2023).
44.
Stanton
,
T. K.
(
1988
). “
Sound scattering by cylinders of finite length. II. Elastic cylinders
,”
J. Acoust. Soc. Am.
83
(
1
),
64
67
.
45.
Starck
,
J.-L.
,
Donoho
,
D.
, and
Elad
,
M.
(
2004
). “
Redundant multiscale transforms and their application for morphological component separation
,” technical report.
46.
Starck
,
J.-L.
,
Elad
,
M.
, and
Donoho
,
D. L.
(
2005
). “
Image decomposition via the combination of sparse representations and a variational approach
,”
IEEE Trans. Image Process.
14
(
10
),
1570
1582
.
47.
Williams
,
K. L.
,
Kargl
,
S. G.
,
Thorsos
,
E. I.
,
Burnett
,
D. S.
,
Lopes
,
J. L.
,
Zampolli
,
M.
, and
Marston
,
P. L.
(
2010
). “
Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: Measurements, modeling, and interpretation
,”
J. Acoust. Soc. Am.
127
(
6
),
3356
3371
.
48.
Williams
,
K. L.
, and
Marston
,
P. L.
(
1986
). “
Synthesis of backscattering from an elastic sphere using the Sommerfeld–Watson transformation and giving a Fabry–Perot analysis of resonances
,”
J. Acoust. Soc. Am.
79
(
6
),
1702
1708
.
49.
Xenaki
,
A.
, and
Pailhas
,
Y.
(
2019
). “
Compressive synthetic aperture sonar imaging with distributed optimization
,”
J. Acoust. Soc. Am.
146
(
3
),
1839
1850
.
50.
Zhang
,
Z.
,
Xu
,
Y.
,
Yang
,
J.
,
Li
,
X.
, and
Zhang
,
D.
(
2015
). “
A survey of sparse representation: Algorithms and applications
,”
IEEE Access
3
,
490
530
.
You do not currently have access to this content.