Quick simulations for iterative evaluations of multi-design variables and boundary conditions are essential to find the optimal acoustic conditions in building design. We propose to use the reduced basis method (RBM) for realistic room acoustic scenarios where the surfaces have inhomogeneous acoustic properties, which enables quick evaluations of changing absorption materials for different surfaces in room acoustic simulations. The RBM has shown its benefit to speed up room acoustic simulations by 3 orders of magnitude for uniform boundary conditions. This study investigates the RBM with two main focuses: (1) various source positions in diverse geometries, e.g., square, rectangular, L-shaped, and disproportionate room, (2) two-dimensional and three-dimensional (3D) inhomogeneous surface absorption by parameterizing numerous acoustic parameters of surfaces, e.g., the thickness of a porous material, cavity depth, switching between a frequency independent (e.g., hard surface) and frequency dependent boundary condition. Results of numerical experiments show speedups of more than 2 orders of magnitude compared to a high fidelity numerical solver in a 3D case where reverberation time varies within one just noticeable difference in all the frequency octave bands.

1.
D.
Abbott
, “
Calming the office cacophony
,”
Safety Health Pract
22
(
1
),
34
36
(
2004
).
2.
N.
Oseland
and
A.
Burton
, “
Quantifying the impact of environmental conditions on worker performance for inputting to a business case to justify enhanced workplace design features
,”
J. Build. Survey, Appr. Val.
1
(
2
),
151
164
(
2012
).
3.
B. M.
Shield
and
J. E.
Dockrell
, “
The effects of noise on children at school: A review
,”
Build. Acoust
10
(
2
),
97
116
(
2003
).
4.
M.
Klatte
,
J.
Hellbrück
,
J.
Seidel
, and
P.
Leistner
, “
Effects of classroom acoustics on performance and well-being in elementary school children: A field study
,”
Environ. Behav.
42
(
5
),
659
692
(
2010
).
5.
A.
Seddigh
,
E.
Berntson
,
F.
Jönsson
,
C. B.
Danielson
, and
H.
Westerlund
, “
The effect of noise absorption variation in open-plan offices: A field study with a cross-over design
,”
J. Environ. Psych.
44
,
34
44
(
2015
).
6.
G. W.
Evans
and
D.
Johnsson
, “
Stress and open-office noise
,”
J. Appl. Psych.
85
(
5
),
779
783
(
2000
).
7.
D.
Botteldooren
, “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
(
6
),
3302
3308
(
1995
).
8.
A.
Craggs
, “
A finite element method for free vibration of air in ducts and rooms with absorbing walls
,”
J. Sound Vib.
73
(
4
),
568
576
(
1994
).
9.
F.
Pind
,
A. P.
Engsig-Karup
,
C. H.
Jeong
,
J. S.
Hesthaven
,
M. S.
Mejling
, and
J. S.
Andersen
, “
Time domain room acoustic simulations using the spectral element method
,”
J. Acoust. Soc. Am.
145
(
6
),
3299
3310
(
2019
).
10.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
(
2015
).
11.
J. S.
Hesthaven
,
G.
Rozza
, and
B.
Stamm
,
Certified Reduced Basis Methods for Parametrized Partial Differential Equations
(
Springer
,
Cham, Switzerland
,
2016
).
12.
N.
Borrel-Jensen
,
A.
Engsig-Karup
, and
C.-H.
Jeong
, “
Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries
,”
JASA Express Lett.
1
(
12
),
122402
(
2021
).
13.
P.
Benner
,
S.
Gugercin
, and
K.
Willcox
, “
A survey of projection-based model reduction methods for parametric dynamical systems
,”
SIAM
57
(
4
),
483
531
(
2015
).
14.
A.
Quarteroni
,
G.
Rozza
, and
A.
Manzoni
, “
Certified reduced basis approximation for parametrized partial differential equations and applications
,”
J. Math Ind
1
,
3
(
2011
).
15.
N. N.
Cuong
,
K.
Veroy
, and
A. T.
Patera
,
Certified Real-Time Solution of Parametrized Partial Differential Equations
, Handbook of Materials Modeling (
Springer
,
Dordrecht, the Netherlands
,
2005
), pp.
1529
1564
.
16.
G.
Rozza
,
D. B. P.
Huynh
, and
A. T.
Patera
, “
Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
,”
Arch. Computat. Methods Eng.
15
(
3
),
229
275
(
2008
).
17.
M.
Drohmann
and
K.
Carlberg
, “
The ROMES method for statistical modeling of reduced-order-model error
,”
SIAM-ASA J. Uncertain. Quantif.
3
(
1
),
116
145
(
2015
).
18.
C.
Prud’homme
and
A.
Patera
, “
Reduced-basis output bounds for approximately parametrized elliptic coercive partial differential equations
,”
Comput. Vis. Sci.
6
(
2
3
),
147
162
(
2004
).
19.
A.
Quarteroni
,
A.
Manzoni
, and
F.
Negri
,
Reduced Basis Methods for Partial Differential Equations: An Introduction
(
Springer
,
Cham, Switzerland
,
2015
).
20.
G.
Berkooz
,
P.
Holmes
,
J. L.
Lumleyand
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, Cambridge Monographs on Mechanics (
Cambridge University Press
,
Cambridge, UK
,
1998
).
21.
M.
Ohlberger
and
S.
Rave
, “
Reduced basis methods: Success, limitations and future challenges
,” in
Proceedings of the Conference Algoritmy
, pp.
1
12
(
2016
).
22.
Q.
Aumanna
,
E.
Deckersb
,
S.
Jonckheerec
,
W.
Desmetc
, and
G.
Muller
, “
Automatic model order reduction for systems with frequency-dependent material properties
,”
Comput. Methods Appl. Mech. Eng.
397
,
115076
(
2022
).
23.
Q.
Aumann
and
G.
Müller
, “
Predicting near optimal interpolation points for parametric model order reduction using regression models
,”
Appl. Math Mech.
20
(
1
),
e202000352
(
2021
).
24.
X.
Xiea
,
W.
Wanga
,
K.
Hea
, and
G.
Lia
, “
Fast model order reduction boundary element method for large-scale acoustic systems involving surface impedance
,”
Comput. Methods Appl. Mech. Eng.
400
,
115618
(
2022
).
25.
M.
Ganesh
,
J.
Hesthaven
, and
B.
Stamm
, “
A reduced basis method for electromagnetic scattering by multiple particles in three dimensions
,”
J. Comput. Phys.
231
(
23
),
7756
7779
(
2012
).
26.
Y.
Chen
and
J. S.
Hesthaven
, “
Certified reduced basis methods and output bounds for the harmonic maxwell’s equations
,”
SIAM J. Sci. Comput.
32
(
2
),
970
996
(
2010
).
27.
D.
Amsallem
,
J.
Cortial
, and
C.
Farhat
, “
Towards realtime computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information
,”
AIAA J.
48
(
9
),
2029
2037
(
2010
).
28.
S.
Giere
, “
Numerical and analytical aspects of pod-based reduced-order modeling in computational fluid dynamics
,” Ph.D. thesis,
Free University of Berlin
,
Germany
,
2016
.
29.
M. A.
Grepl
, “
Reduced-basis approximation and a posteriori error estimation for parabolic partial differential equations
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
,
2005
.
30.
R. S.
Puri
,
D.
Morrey
,
A. J.
Bell
,
J. F.
Durodola
,
E. B.
Rudnyi
, and
J. G.
Korvink
, “
Reduced order fully coupled structural–acoustic analysis via implicit moment matching
,”
Appl. Math. Mod.
33
(
11
),
4097
4119
(
2009
).
31.
U.
Hetmaniuk
,
R.
Tezaur
, and
C.
Farhat
, “
Review and assessment of interpolatory model order reduction methods for frequency response structural dynamics and acoustics problems
,”
Int. J. Num. Meth. Eng
90
(
13
),
1636
1662
(
2012
).
32.
J.
Herrmann
,
M.
Maess
, and
L.
Gaul
, “
Substructuring including interface reduction for the efficient vibro-acoustic simulation of fluid-filled piping systems
,”
Mech. Syst. Signal Proc.
24
(
1
),
153
163
(
2010
).
33.
H.
Basir
,
A.
Javaherian
,
Z.
Shomali
,
R.
Firouz-Abadi
, and
S.
Gholamy
, “
Acoustic wave propagation simulation by reduced order modelling
,”
Explor. Geophys.
49
(
3
),
386
397
(
2018
).
34.
L.
Borcea
,
J.
Garnier
,
A.
Mamonov
, and
J.
Zimmerling
, “
Reduced order model approach for imaging with waves
,”
Inverse Probl.
38
(
2
),
025004
(
2022
).
35.
J.
Willhite
,
K.
Frampton
, and
D. W.
Grantham
, “
Reduced order modeling of head related transfer functions for virtual acoustic displays
,”
J. Acoust. Soc. Am.
113
(
4
),
2270
2270
(
2003
).
36.
S.
Bukka
,
Y.
Law
,
H.
Santo
, and
R.
Chan
, “
Reduced order model for nonlinear multi-directional ocean wave propagation
,”
Phys. Fluids
33
(
11
),
117115
(
2021
).
37.
A.
Tello
and
R.
Codina
, “
Field-to-field coupled fluid structure interaction: A reduced order model study
,”
Int. J. Numer. Methods Eng.
122
(
1
),
53
81
(
2021
).
38.
M.
Miller
,
S.
Ophem
,
E.
Deckers
, and
W.
Desmet
, “
Time-domain impedance boundary conditions for acoustic reduced order finite element simulations
,”
Comput. Methods Appl. Mech. Eng.
387
(
15
),
114173
(
2021
).
39.
H. S.
Llopis
,
A. P.
Engsig-Karup
,
C.-H.
Jeong
,
F.
Pind
, and
J. S.
Hesthaven
, “
Reduced basis methods for numerical room acoustic simulations with parametrized boundaries
,”
J. Acoust. Soc. Am.
152
(
2
),
851
865
(
2022
).
40.
J. S.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
(
Springer
,
New York
,
2008
).
41.
H.
Xu
,
C.
Cantwell
,
C.
Monteserin
,
C.
Eskilsson
,
A. P.
Engsig-Karup
, and
S.
Sherwin
, “
Spectral/hp element methods: Recent developments, applications, and perspectives
,”
J. Hydrodyn.
30
(
1
),
1
22
(
2018
).
42.
B.
Cotté
,
P.
Blanc-Benon
,
C.
Bogey
, and
F.
Poisson
, “
Time-domain impedance boundary conditions for simulations of outdoor sound propagation
,”
AIAA J.
47
,
2391
2403
(
2009
).
43.
R.
Troian
,
D.
Dragna
,
C.
Bailly
, and
M.-A.
Galland
, “
Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow
,”
J. Sound Vib.
392
,
200
216
(
2017
).
44.
Y.
Miki
, “
Acoustical properties of porous materials-modifications of Delany-Bazley models
,”
J. Acoust. Soc. Jpn.
11
(
1
),
19
24
(
1990
).
45.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
,
3rd ed
. (
Wiley
,
West Sussex
,
2009
).
46.
B.
Gustavsen
and
A.
Semlyen
, “
Rational approximation of frequency domain responses by vector fitting
,”
IEEE Trans. Power Deliv.
14
(
3
),
1052
1061
(
1999
).
47.
C.
Bigoni
and
J. S.
Hesthaven
, “
Simulation-based anomaly detection and damage localization: An application to structural health monitoring
,”
Comput. Methods Appl. Mech. Eng.
63
,
12896
(
2020
).
48.
W. T.
Weeks
, “
Numerical inversion of Laplace transform using Laguerre functions
,”
J. ACM
13
(
3
),
419
429
(
1966
).
49.
L.
Peng
and
K.
Mohseni
, “
Symplectic model reduction of Hamiltonian systems
,”
SIAM J. Sci. Comput.
38
(
1
),
A1
A27
(
2016
).
50.
S.
Sakamoto
, “
Phase-error analysis of high-order finite difference time domain scheme and its influence on calculation results of impulse response in closed sound field
,”
Acoust. Sci. Technol.
28
(
5
),
295
309
(
2007
).
51.
C.
Jeong
and
J.
lh
, “
Effects of source and receiver locations in predicting room transfer functions by a phased beam tracing method
,”
J. Acoust. Soc. Am.
131
(
5
),
3864
3875
(
2012
).
52.
T.
Cox
and
P.
DAntonio
,
Acoustic Absorbers and Diffusers: Theory, Design and Application: Theory, Design and Application
(
Spon
,
Press, London
,
2004
).
53.
ISO 3382-1:2009
, “
Measurement of room acoustic parameters, Part 1: Performance spaces
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2009
).
54.
P.
Luizard
,
B. F. G.
Katz
, and
C.
Guastavino
, “
Perceptual thresholds for realistic double-slope decay reverberation in large coupled spaces
,”
J. Acoust. Soc. Am.
137
(
1
),
75
84
(
2015
).
55.
M. G.
Blevins
,
A. T.
Buck
,
Z.
Peng
, and
L. M.
Wang
, “
Quantifying the just noticeable difference of reverberation time with band-limited noise centered around 1000 Hz using a transformed up-down adaptive method
,” in
Proc. Int. Symp. Room Acoustics (ISRA)
,
Toronto, Canada
(June 9–11,
2013
).
56.
M.
Karjalainen
and
H.
Järveläinen
, “
More about this reverberation science: Perceptually good late reverberation
,” in
Proc. 111th Audio Eng. Soc. Conv.
,
New York
(November 1,
2001
), p. 5415.
57.
Z.
Meng
,
F.
Zhao
, and
M.
He
, “
The just noticeable difference of noise length and reverberation perception
,” in
Proc. Int. Symp. Com. Inf. Tech.
,
Bangkok, Thailand
(October 18–20,
2006
).
58.
K.
Prawda
,
S. J.
Schlecht
, and
V.
Välimäki
, “
Improved reverberation time control for feedback delay networks
,” in
Proceedings of the International Conference on Digital Audio Effects
,
Birmingham, UK
(September 2–6,
2019
).
You do not currently have access to this content.