Physiological and psychoacoustic studies of the medial olivocochlear reflex (MOCR) in humans have often relied on long duration elicitors (>100 ms). This is largely due to previous research using otoacoustic emissions (OAEs) that found multiple MOCR time constants, including time constants in the 100s of milliseconds, when elicited by broadband noise. However, the effect of the duration of a broadband noise elicitor on similar psychoacoustic tasks is currently unknown. The current study measured the effects of ipsilateral broadband noise elicitor duration on psychoacoustic gain reduction estimated from a forward-masking paradigm. Analysis showed that both masker type and elicitor duration were significant main effects, but no interaction was found. Gain reduction time constants were ∼46 ms for the masker present condition and ∼78 ms for the masker absent condition (ranging from ∼29 to 172 ms), both similar to the fast time constants reported in the OAE literature (70–100 ms). Maximum gain reduction was seen for elicitor durations of ∼200 ms. This is longer than the 50-ms duration which was found to produce maximum gain reduction with a tonal on-frequency elicitor. Future studies of gain reduction may use 150–200 ms broadband elicitors to maximally or near-maximally stimulate the MOCR.

1.
Allen
,
J. B.
(
1986
). “
Measurement of eardrum acoustic impedance
,” in
Peripheral Auditory Mechanisms
(
Springer
,
Berlin
), pp.
44
51
.
2.
Almishaal
,
A.
,
Bidelman
,
G. M.
, and
Jennings
,
S. G.
(
2017
). “
Notched-noise precursors improve detection of low-frequency amplitude modulation
,”
J. Acoust. Soc. Am.
141
,
324
333
.
3.
Backus
,
B. C.
, and
Guinan
,
J. J.
, Jr.
(
2006
). “
Time-course of the human medial olivocochlear reflex
,”
J. Acoust. Soc. Am.
119
,
2889
2904
.
4.
Bacon
,
S. P.
, and
Moore
,
B. C.
(
1986
). “
Temporal effects in simultaneous pure-tone masking: Effects of signal frequency, masker/signal frequency ratio, and masker level
,”
Hear. Res.
23
,
257
266
.
5.
Bassim
,
M. K.
,
Miller
,
R. L.
,
Buss
,
E.
, and
Smith
,
D. W.
(
2003
). “
Rapid adaptation of the 2f1–f2 DPOAE in humans: Binaural and contralateral stimulation effects
,”
Hear. Res.
182
,
140
152
.
6.
Bharadwaj
,
H. M.
,
Hustedt-Mai
,
A. R.
,
Ginsberg
,
H. M.
,
Dougherty
,
K. M.
,
Muthaiah
,
V. P. K.
,
Hagedorn
,
A.
,
Simpson
J. M.
, and
Heinz
,
M. G.
(
2022
). “
Cross-species experiments reveal widespread cochlear neural damage in normal hearing
,”
Commun. Biol.
5
(
1
),
10
.
7.
Bidelman
,
G. M.
,
Jennings
,
S. G.
, and
Strickland
,
E. A.
(
2015
). “
PsyAcoustX: A flexible MATLAB® package for psychoacoustics research
,”
Front. Psychol.
6
,
1498
.
8.
Boothalingam
,
S.
,
Goodman
,
S. S.
,
MacCrae
,
H.
, and
Dhar
,
S.
(
2021
). “
A time-course-based estimation of the human medial olivocochlear reflex function using clicks
,”
Front. Neurosci.
15
,
746821
.
9.
Brown
,
G. J.
,
Ferry
,
R. T.
, and
Meddis
,
R.
(
2010
). “
A computer model of auditory efferent suppression: Implications for the recognition of speech in noise
,”
J. Acoust. Soc. Am.
127
,
943
954
.
10.
Carney
,
L. H.
(
2018
). “
Supra-threshold hearing and fluctuation profiles: Implications for sensorineural and hidden hearing loss
,”
J. Assoc. Res. Otolaryngol.
19
,
331
352
.
11.
Clark
,
N. R.
,
Brown
,
G. J.
,
Jürgens
,
T.
, and
Meddis
,
R.
(
2012
). “
A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise
,”
J. Acoust. Soc. Am.
132
,
1535
1541
.
12.
Cooper
,
N. P.
, and
Guinan
,
J. J.
, Jr.
(
2003
). “
Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity
,”
J. Physiol.
548
,
307
312
.
13.
Cooper
,
N. P.
, and
Guinan
,
J. J.
, Jr.
(
2006a
). “
Medial olivocochlear efferent effects on basilar membrane responses to sound
,” in
Auditory Mechanisms: Processes and Models
, pp.
86
92
.
14.
Cooper
,
N. P.
, and
Guinan
,
J. J.
, Jr.
(
2006b
). “
Efferent-mediated control of basilar membrane motion
,”
J. Physiol.
576
,
49
54
.
15.
DeRoy Milvae
,
K.
, and
Strickland
,
E. A.
(
2018
). “
Psychoacoustic measurements of ipsilateral cochlear gain reduction as a function of signal frequency
,”
J. Acoust. Soc. Am.
143
,
3114
3125
.
16.
DeRoy Milvae
,
K.
, and
Strickland
,
E. A.
(
2021
). “
Behavioral measures of cochlear gain reduction depend on precursor frequency, bandwidth, and level
,”
Front. Neurosci.
15
,
716689
.
17.
Feeney
,
M. P.
, and
Keefe
,
D. H.
(
2001
). “
Estimating the acoustic reflex threshold from wideband measures of reflectance, admittance, and power
,”
Ear Hear.
22
,
316
332
.
18.
Feeney
,
M. P.
,
Keefe
,
D. H.
,
Hunter
,
L. L.
,
Fitzpatrick
,
D. F.
,
Garinis
,
A. C.
,
Putterman
,
D. B.
, and
McMillan
,
G. P.
(
2017
). “
Normative wideband reflectance, equivalent admittance at the tympanic membrane, and acoustic stapedius reflex threshold in adults
,”
Ear Hear.
38
,
e142
e160
.
19.
Fletcher
,
H.
(
1940
). “
Auditory patterns
,”
Rev. Mod. Phys.
12
,
47
65
.
20.
Giraud
,
A. L.
,
Garnier
,
S.
,
Micheyl
,
C.
,
Lina
,
G.
,
Chays
,
A.
, and
Chéry-Croze
,
S.
(
1997
). “
Auditory efferents involved in speech-in-noise intelligibility
,”
Neuroreport
8
,
1779
1783
.
21.
Groon
,
K. A.
,
Rasetshwane
,
D. M.
,
Kopun
,
J. G.
,
Gorga
,
M. P.
, and
Neely
,
S. T.
(
2015
). “
Air-leak effects on ear-canal acoustic absorbance
,”
Ear Hear.
36
,
155
163
.
22.
Guinan
,
J. J.
, Jr.
(
1996
). “
Physiology of Olivocochlear Efferents
,” in
The Cochlea
(Springer, New York), pp.
435
502
.
23.
Guinan
,
J. J.
, Jr.
(
2006
). “
Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans
,”
Ear Hear.
27
,
589
607
.
24.
Guinan
,
J. J.
, Jr.
(
2018
). “
Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses
,”
Hear. Res.
362
,
38
47
.
25.
Hegland
,
E. L.
, and
Strickland
,
E. A.
(
2018
). “
The effects of preceding sound and stimulus duration on measures of suppression in younger and older adults
,”
J. Acoust. Soc. Am.
144
,
3548
3562
.
26.
Hicks
,
M. L.
, and
Bacon
,
S. P.
(
1992
). “
Factors influencing temporal effects with notched-noise maskers
,”
Hear. Res.
64
,
123
132
.
27.
James
,
A. L.
,
Harrison
,
R. V.
,
Pienkowski
,
M.
,
Dajani
,
H. R.
, and
Mount
,
R. J.
(
2005
). “
Dynamics of real time DPOAE contralateral suppression in chinchillas and humans
,”
Int. J. Audiol.
44
,
118
129
.
28.
Jennings
,
S. G.
(
2021
). “
The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: A review
,”
J. Neurophysiol.
125
,
2279
2308
.
29.
Jennings
,
S. G.
, and
Strickland
,
E. A.
(
2010
). “
The frequency selectivity of gain reduction masking: Analysis using two equally-effective maskers
,” in
The Neurophysiological Bases of Auditory Perception
(
Springer
,
New York
), pp.
47
58
.
30.
Jennings
,
S. G.
, and
Strickland
,
E. A.
(
2012
). “
Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity
,”
J. Acoust. Soc. Am.
132
,
2483
2496
.
31.
Jennings
,
S. G.
,
Strickland
,
E. A.
, and
Heinz
,
M. G.
(
2009
). “
Precursor effects on behavioral estimates of frequency selectivity and gain in forward masking
,”
J. Acoust. Soc. Am.
125
,
2172
2181
.
32.
Jürgens
,
T.
,
Clark
,
N. R.
,
Lecluyse
,
W.
, and
Meddis
,
R.
(
2016
). “
Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing
,”
Int. J. Audiol.
55
,
346
357
.
33.
Kawase
,
T.
,
Delgutte
,
B.
, and
Liberman
,
M. C.
(
1993
). “
Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones
,”
J. Neurophysiol.
70
,
2533
2549
.
34.
Kawase
,
T.
,
Ogura
,
M.
,
Hidaka
,
H.
,
Sasaki
,
N.
,
Suzuki
,
Y.
, and
Takasaka
,
T.
(
2000
). “
Effects of contralateral noise on measurement of the psychophysical tuning curve
,”
Hear. Res.
142
,
63
70
.
35.
Keefe
,
D. H.
,
Feeney
,
M. P.
,
Hunter
,
L. L.
, and
Fitzpatrick
,
D. F.
(
2017
). “
Aural acoustic stapedius-muscle reflex threshold procedures to test human infants and adults
,”
J. Assoc. Res. Otolaryngol.
18
,
65
88
.
36.
Kiang
,
N. Y. S.
,
Watanabe
,
T.
,
Thomas
,
E. C.
, and
Clark
,
L. F.
(
1965
). “
Discharge patterns of single fibers in the cat's auditory nerve
,”
Research Monograph No. 35
(
Massachusetts Institute of Technology
,
Cambridge, MA
).
37.
Kim
,
D. O.
,
Dorn
,
P. A.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
2001
). “
Adaptation of distortion product otoacoustic emission in humans
,”
J. Assoc. Res. Otolaryngol.
2
,
31
.
38.
Krull
,
V.
, and
Strickland
,
E. A.
(
2008
). “
The effect of a precursor on growth of forward masking
,”
J. Acoust. Soc. Am.
123
,
4352
4357
.
39.
Levitt
,
H. C. C. H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
40.
Liberman
,
M. C.
,
Puria
,
S.
, and
Guinan
,
J. J.
, Jr.
(
1996
). “
The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1f2 distortion product otoacoustic emission
,”
J. Acoust. Soc. Am.
99
,
3572
3584
.
41.
Lilaonitkul
,
W.
, and
Guinan
,
J. J.
(
2009a
). “
Human medial olivocochlear reflex: Effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths
,”
J. Assoc. Res. Otolaryngol.
10
,
459
470
.
42.
Liu
,
F.
, and
Demosthenous
,
A.
(
2020
). “
Effect of time constant on speech enhancement in hearing aids based on auditory neural feedback
,” in
IEEE International Symposium on Circuits and Systems (ISCAS)
, pp.
1
5
.
43.
Lopez-Poveda
,
E. A.
,
Eustaquio-Martın
,
A.
,
Stohl
,
J. S.
,
Wolford
,
R. D.
,
Schatzer
,
R.
, and
Wilson
,
B. S.
(
2016
). “
A binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex
,”
Ear Hear.
37
,
e138
e148
.
44.
Maison
,
S.
,
Micheyl
,
C.
,
Andéol
,
G.
,
Gallégo
,
S.
, and
Collet
,
L.
(
2000
). “
Activation of medial olivocochlear efferent system in humans: Influence of stimulus bandwidth
,”
Hear. Res.
140
,
111
125
.
45.
Marrufo-Pérez
,
M. I.
,
Johannesen
,
P. T.
, and
Lopez-Poveda
,
E. A.
(
2021
). “
Correlation and reliability of behavioral and otoacoustic-emission estimates of contralateral medial olivocochlear reflex strength in humans
,”
Front. Neurosci.
15
,
640127
.
46.
McFadden
,
D.
,
Walsh
,
K. P.
,
Pasanen
,
E. G.
, and
Grenwelge
,
E. M.
(
2010
). “
Overshoot using very short signal delays
,”
J. Acoust. Soc. Am.
128
,
1915
1921
.
47.
Murugasu
,
E.
, and
Russell
,
I. J.
(
1996
). “
The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea
,”
J. Neurosci.
16
,
325
332
.
48.
Neely
,
S. T.
, and
Liu
,
Z.
(
1994
).
EMAV: Otoacoustic Emission Averager
(
Boys Town National Research Hospital
,
Boys Town, NE
), Vol.
17
.
49.
Nelson
,
D. A.
,
Schrode
,
A. C.
, and
Wojtczak
,
M.
(
2001
). “
A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners
,”
J. Acoust. Soc. Am.
110
,
2045
2064
.
50.
Oxenham
,
A. J.
, and
Moore
,
B. C.
(
1994
). “
Modeling the additivity of nonsimultaneous masking
,”
Hear. Res.
80
,
105
118
.
51.
Oxenham
,
A. J.
, and
Plack
,
C. J.
(
1997
). “
A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing
,”
J. Acoust. Soc. Am.
101
,
3666
3675
.
52.
Oxenham
,
A. J.
, and
Plack
,
C. J.
(
2000
). “
Effects of masker frequency and duration in forward masking: Further evidence for the influence of peripheral nonlinearity
,”
Hear. Res.
150
,
258
266
.
53.
Patterson
,
R. D.
, and
Moore
,
B. C. J.
(
1986
). “
Auditory filters and excitation patterns as representations of frequency resolution
,” in
Frequency Selectivity in Hearing
, edited by
B. C. J.
Moore
(
Academic Press
,
London
), pp.
123
177
.
54.
Penner
,
M. J.
, and
Shiffrin
,
R. M.
(
1980
). “
Nonlinearities in the coding of intensity within the context of a temporal summation model
,”
J. Acoust. Soc. Am.
67
,
617
627
.
55.
Plack
,
C. J.
, and
O'Hanlon
,
C. G.
(
2003
). “
Forward masking additivity and auditory compression at low and high frequencies
,”
J. Assoc. Res. Otolaryngol.
4
,
405
415
.
56.
Roverud
,
E.
, and
Strickland
,
E. A.
(
2010
). “
The time course of cochlear gain reduction measured using a more efficient psychophysical technique
,”
J. Acoust. Soc. Am.
128
,
1203
1214
.
57.
Roverud
,
E.
, and
Strickland
,
E. A.
(
2014
). “
Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model
,”
J. Acoust. Soc. Am.
135
,
1321
1334
.
58.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
59.
Salloom
,
W. B.
, and
Strickland
,
E. A.
(
2021
). “
The effect of broadband elicitor laterality on psychoacoustic gain reduction across signal frequency
,”
J. Acoust. Soc. Am.
150
,
2817
2835
.
60.
Sridhar
,
T. S.
,
Brown
,
M. C.
, and
Sewell
,
W. F.
(
1997
). “
Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales
,”
J. Neurosci.
17
,
428
437
.
61.
Sridhar
,
T. S.
,
Liberman
,
M. C.
,
Brown
,
M. C.
, and
Sewell
,
W. F.
(
1995
). “
A novel cholinergic ‘slow effect’ of efferent stimulation on cochlear potentials in the guinea pig
,”
J. Neurosci.
15
,
3667
3678
.
62.
Strickland
,
E. A.
(
2001
). “
The relationship between frequency selectivity and overshoot
,”
J. Acoust. Soc. Am.
109
,
2062
2073
.
63.
Strickland
,
E. A.
,
Salloom
,
W. B.
, and
Hegland
,
E. L.
(
2018
). “
Evidence for gain reduction by a precursor in an on-frequency forward masking paradigm
,”
Acta Acust. united Acust.
104
,
809
812
.
64.
Walsh
,
K. P.
,
Pasanen
,
E. G.
, and
McFadden
,
D.
(
2010a
). “
Properties of a nonlinear version of the stimulus-frequency otoacoustic emission
,”
J. Acoust. Soc. Am.
127
,
955
969
.
65.
Walsh
,
K. P.
,
Pasanen
,
E. G.
, and
McFadden
,
D.
(
2010b
). “
Overshoot measured physiologically and psychophysically in the same human ears
,”
Hear. Res.
268
,
22
37
.
66.
Weber
,
D. L.
(
1978
). “
Suppression and critical bands in band‐limiting experiments
,”
J. Acoust. Soc. Am.
64
,
141
150
.
67.
Wicher
,
A.
, and
Moore
,
B. C.
(
2014
). “
Effect of broadband and narrowband contralateral noise on psychophysical tuning curves and otoacoustic emissions
,”
J. Acoust. Soc. Am.
135
,
2931
2941
.
68.
Winslow
,
R. L.
, and
Sachs
,
M. B.
(
1988
). “
Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle
,”
Hear. Res.
35
,
165
189
.
69.
Yasin
,
I.
,
Drga
,
V.
,
Liu
,
F.
,
Demosthenous
,
A.
, and
Meddis
,
R.
(
2020
). “
Optimizing speech recognition using a computational model of human hearing: Effect of noise type and efferent time constants
,”
IEEE Access
8
,
56711
56719
.
70.
Yasin
,
I.
,
Drga
,
V.
, and
Plack
,
C. J.
(
2014
). “
Effect of human auditory efferent feedback on cochlear gain and compression
,”
J. Neurosci.
34
,
15319
15326
.
71.
Yasin
,
I.
,
Liu
,
F.
,
Drga
,
V.
,
Demosthenous
,
A.
, and
Meddis
,
R.
(
2018
). “
Effect of auditory efferent time-constant duration on speech recognition in noise
,”
J. Acoust. Soc. Am.
143
,
EL112
EL115
.
72.
Zwicker
,
E.
(
1965
). “
Temporal effects in simultaneous masking by white‐noise bursts
,”
J. Acoust. Soc. Am.
37
,
653
663
.
You do not currently have access to this content.