A numerical model for cavitation in blood is developed based on the Keller–Miksis equation for spherical bubble dynamics with the Carreau model to represent the non-Newtonian behavior of blood. Three different pressure waveforms driving the bubble oscillations are considered: a single-cycle Gaussian waveform causing free growth and collapse, a sinusoidal waveform continuously driving the bubble, and a multi-cycle pulse relevant to contrast-enhanced ultrasound. Parameters in the Carreau model are fit to experimental measurements of blood viscosity. In the Carreau model, the relaxation time constant is 5–6 orders of magnitude larger than the Rayleigh collapse time. As a result, non-Newtonian effects do not significantly modify the bubble dynamics but do give rise to variations in the near-field stresses as non-Newtonian behavior is observed at distances 10–100 initial bubble radii away from the bubble wall. For sinusoidal forcing, a scaling relation is found for the maximum non-Newtonian length, as well as for the shear stress, which is 3 orders of magnitude larger than the maximum bubble radius.

1.
Ahmad
,
R.
,
Farooqi
,
A.
,
Farooqi
,
R.
,
Hamadneh
,
N. N.
,
Fayz-Al-Asad
,
M.
,
Khan
,
I.
,
Sajid
,
M.
,
Bary
,
G.
, and
Khan
,
M. F. S.
(
2021
). “
An analytical approach to study the blood flow over a nonlinear tapering stenosed artery in flow of Carreau fluid model
,”
Complexity
2021
,
1
11
.
2.
Allen
,
J. S.
, and
Roy
,
R. A.
(
2000a
). “
Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity
,”
J. Acoust. Soc. Am.
107
,
3167
3178
.
3.
Allen
,
J. S.
, and
Roy
,
R. A.
(
2000b
). “
Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity
,”
J. Acoust. Soc. Am.
108
,
1640
1650
.
4.
Anand
,
M.
,
Kwack
,
J.
, and
Masud
,
A.
(
2013
). “
A new generalized Oldroyd-B model for blood flow in complex geometries
,”
Int. J. Eng. Sci.
72
,
78
88
.
5.
Anand
,
M.
, and
Rajagopal
,
K. R.
(
2004
). “
A shear-thinning viscoelastic fluid model for describing the flow of blood
,”
Int. J. Cardiovasc. Med. Sci.
4
,
59
68
.
6.
Apfel
,
R. E.
(
1981
). “
Acoustic cavitation prediction
,”
J. Acoust. Soc. Am.
69
,
1624
1633
.
7.
Apfel
,
R. E.
(
1982
). “
Acoustic cavitation: A possible consequence of biomedical uses of ultrasound
,”
Br. J. Cancer. Suppl.
5
,
140
146
.
8.
Averkiou
,
M.
,
Powers
,
J.
,
Skyba
,
D.
,
Bruce
,
M.
, and
Jensen
,
S.
(
2003
). “
Ultrasound contrast imaging research
,”
Ultrasound Q.
19
,
27
37
.
9.
Barajas
,
C.
, and
Johnsen
,
E.
(
2017
). “
The effects of heat and mass diffusion on freely oscillating bubbles in a viscoelastic, tissue-like medium
,”
J. Acoust. Soc. Am.
141
,
908
918
.
10.
Beris
,
A. N.
,
Horner
,
J. S.
,
Jariwala
,
S.
,
Armstrong
,
M. J.
, and
Wagner
,
N. J.
(
2021
). “
Recent advances in blood rheology: A review
,”
Soft Matter
17
,
10591
10613
.
11.
Bird
,
R. B.
(
1976
). “
Useful non-Newtonian models
,”
Annu. Rev. Fluid Mech.
8
,
13
34
.
12.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
(
1987
).
Dynamics of Polymeric Liquids
(
Wiley-Interscience
,
Hoboken, NJ
), pp.
1
672
.
13.
Biro
,
G. P.
(
1982
). “
Comparison of acute cardiovascular effects and oxygen-supply following haemodilution with dextran, stroma-free haemoglobin solution and fluorocarbon suspension
,”
Cardiovasc. Res.
16
,
194
204
.
14.
Brayman
,
A. A.
,
Lizotte
,
L. M.
, and
Miller
,
M. W.
(
1999
). “
Erosion of artificial endothelia in vitro by pulsed ultrasound: Acoustic pressure, frequency, membrane orientation and microbubble contrast agent dependence
,”
Ultrasound Med. Biol.
25
,
1305
1320
.
15.
Brujan
,
E. A.
(
1998
). “
Bubble dynamics in a compressible shear-thinning liquid
,”
Fluid Dyn. Res.
23
,
291
318
.
16.
Brujan
,
E. A.
(
1999
). “
A first-order model for bubble dynamics in a compressible viscoelastic liquid
,”
J. Nonnewton. Fluid Mech.
84
,
83
103
.
17.
Brujan
,
E. A.
(
2000
). “
Collapse of cavitation bubbles in blood
,”
Europhys. Lett.
50
,
175
181
.
18.
Brujan
,
E. A.
(
2009
). “
Cavitation bubble dynamics in non-Newtonian fluids
,”
Polym. Eng. Sci.
49
,
419
431
.
19.
Brust
,
M.
,
Schaefer
,
C.
,
Doerr
,
R.
,
Pan
,
L.
,
Garcia
,
M.
,
Arratia
,
P. E.
, and
Wagner
,
C.
(
2013
). “
Rheology of human blood plasma: Viscoelastic versus Newtonian behavior
,”
Phys. Rev. Lett.
110
,
078305
.
20.
Chatterjee
,
D.
, and
Sarkar
,
K.
(
2003
). “
A Newtonian rheological model for the interface of microbubble contrast agents
,”
Ultrasound Med. Biol.
29
,
1749
1757
.
21.
Cho
,
Y. I.
, and
Kensey
,
K. R.
(
1991
). “
Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows
,”
Biorheology
28
,
241
262
.
22.
Cokelet
,
G. R.
,
Merrill
,
E. W.
,
Gilliland
,
E. R.
,
Shin
,
H.
,
Britten
,
A.
, and
Wells
,
R. E.
(
1963
). “
The rheology of human blood—Measurement near and at zero shear rate
,”
Trans. Soc. Rheol.
7
,
303
317
.
23.
Coleman
,
T. F.
, and
Li
,
Y.
(
1994
). “
On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds
,”
Math. Program.
67
,
189
224
.
24.
de Waele
,
A.
(
2020
). “
Viscometry and plastometry
,”
Oil Color Chem. Assoc. J.
6
,
33
69
.
25.
Estrada
,
J. B.
,
Barajas
,
C.
,
Henann
,
D. L.
,
Johnsen
,
E.
, and
Franck
,
C.
(
2017
). “
High strain-rate soft material characterization via inertial cavitation
,”
J. Mech. Phys. Solids
112
,
291
317
.
26.
Faez
,
T.
,
Emmer
,
M.
,
Kooiman
,
K.
,
Versluis
,
M.
,
Van Der Steen
,
A.
, and
De Jong
,
N.
(
2013
). “
20 years of ultrasound contrast agent modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
60
,
7
20
.
27.
Flynn
,
H. G.
(
1982
). “
Generation of transient cavities in liquids by microsecond pulses of ultrasound
,”
J. Acoust. Soc. Am.
72
,
1926
1932
.
28.
Fogler
,
H. S.
(
1970
). “
Collapse of spherical cavities in viscoelastic fluids
,”
Phys. Fluids
13
,
1135
1141
.
29.
Gaudron
,
R.
,
Warnez
,
M. T.
, and
Johnsen
,
E.
(
2015
). “
Bubble dynamics in a viscoelastic medium with nonlinear elasticity
,”
J. Fluid Mech.
766
,
54
75
.
30.
Hara
,
S. K.
, and
Schowalter
,
W. R.
(
1984
). “
Dynamics of nonspherical bubbles surrounded by viscoelastic fluid
,”
J. Nonnewton. Fluid Mech.
14
,
249
264
.
31.
Izadifar
,
Z.
,
Babyn
,
P.
, and
Chapman
,
D.
(
2017
). “
Mechanical and biological effects of ultrasound: A review of present knowledge
,”
Ultrasound Med. Biol.
43
,
1085
1104
.
32.
Jamalabadi
,
M. Y. A.
,
Daqiqshirazi
,
M.
,
Nasiri
,
H.
,
Safaei
,
M. R.
, and
Nguyen
,
T. K.
(
2018
). “
Modeling and analysis of biomagnetic blood Carreau fluid flow through a stenosis artery with magnetic heat transfer: A transient study
,”
PLoS One
13
,
e0192138
.
33.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
(
2004
). “
Non-Newtonian blood flow in human right coronary arteries: Steady state simulations
,”
J. Biomech.
37
,
709
720
.
34.
Katiyar
,
A.
,
Sarkar
,
K.
, and
Jain
,
P.
(
2009
). “
Effects of encapsulation elasticity on the stability of an encapsulated microbubble
,”
J. Colloid Interface Sci.
336
,
519
525
.
35.
Keller
,
J. B.
, and
Miksis
,
M.
(
1980
). “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
633
.
36.
Kim
,
B.
,
Lee
,
S.
,
Jee
,
S.
,
Atajanov
,
A.
, and
Yang
,
S.
(
2017
). “
Micro-viscometer for measuring shear-varying blood viscosity over a wide-ranging shear rate
,”
Sensors
17
,
1442
.
37.
Lázaro
,
G. R.
,
Hernández-Machado
,
A.
, and
Pagonabarraga
,
I.
(
2014
). “
Rheology of red blood cells under flow in highly confined microchannels: I. Effect of elasticity
,”
Soft Matter
10
,
7195
.
38.
Leighton
,
T. G.
(
1994
).
The Acoustic Bubble
(
Academic
,
New York
), pp.
1
632
.
39.
Mancia
,
L.
,
Rodriguez
,
M.
,
Sukovich
,
J.
,
Xu
,
Z.
, and
Johnsen
,
E.
(
2020
). “
Single-bubble dynamics in histotripsy and high-amplitude ultrasound: Modeling and validation
,”
Phys. Med. Biol.
65
,
225014
.
40.
Mancia
,
L.
,
Vlaisavljevich
,
E.
,
Yousefi
,
N.
,
Rodriguez
,
M.
,
Ziemlewicz
,
T. J.
,
Lee
,
F. T.
,
Henann
,
D.
,
Franck
,
C.
,
Xu
,
Z.
, and
Johnsen
,
E.
(
2019
). “
Modeling tissue-selective cavitation damage
,”
Phys. Med. Biol.
64
,
225001
.
41.
Marmottant
,
P.
,
van der Meer
,
S.
,
Emmer
,
M.
,
Versluis
,
M.
,
de Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
.
42.
Merrill
,
E. W.
(
1969
). “
Rheology of blood
,”
Physiol. Rev.
49
,
863
888
.
43.
Miller
,
D. L.
,
Averkiou
,
M. A.
,
Brayman
,
A. A.
,
Everbach
,
E. C.
,
Holland
,
C. K.
,
Wible
,
J. H.
, and
Wu
,
J.
(
2008a
). “
Bioeffects considerations for diagnostic ultrasound contrast agents
,”
J. Ultrasound Med.
27
,
611
632
.
44.
Miller
,
D. L.
,
Dou
,
C.
, and
Wiggins
,
R. C.
(
2008b
). “
Frequency dependence of kidney injury induced by contrast-aided diagnostic ultrasound in rats
,”
Ultrasound Med. Biol.
34
,
1678
1687
.
45.
Myers
,
T. G.
(
2005
). “
Application of non-Newtonian models to thin film flow
,”
Phys. Rev. E
72
,
066302
.
46.
Ohta
,
M.
,
Toyooka
,
T.
, and
Matsukuma
,
Y.
(
2020
). “
Numerical simulations of Carreau-model fluid flows past a circular cylinder
,”
Asia-Pacific J. Chem. Eng.
15
,
e2527
.
48.
Patterson
,
B.
,
Miller
,
D. L.
, and
Johnsen
,
E.
(
2012
). “
Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds
,”
J. Acoust. Soc. Am.
132
,
3770
3777
.
49.
Plesset
,
M. S.
, and
Chapman
,
R. B.
(
1971
). “
Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
47
,
283
290
.
50.
Plesset
,
M. S.
, and
Prosperetti
,
A.
(
1977
). “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
.
51.
Preston
,
A. T.
,
Colonius
,
T.
, and
Brennen
,
C. E.
(
2007
). “
A reduced-order model of diffusive effects on the dynamics of bubbles
,”
Phys. Fluids
19
,
123302
.
52.
Prosperetti
,
A.
(
1982
). “
A generalization of the Rayleigh-Plesset equation of bubble dynamics
,”
Phys. Fluids
25
,
409
410
.
53.
Prosperetti
,
A.
(
1991
). “
The thermal behaviour of oscillating gas bubbles
,”
J. Fluid Mech.
222
,
587
616
.
54.
Prosperetti
,
A.
, and
Lezzi
,
A.
(
1986
). “
Bubble dynamics in a compressible liquid. Part 1. First-order theory
,”
J. Fluid Mech.
168
,
457
478
.
55.
Raisinghani
,
A.
, and
DeMaria
,
A. N.
(
2002
). “
Physical principles of microbubble ultrasound contrast agents
,”
Am. J. Cardiol.
90
,
3
7
.
56.
Rayleigh
,
L.
(
1917
). “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
98
.
57.
Sarkar
,
K.
,
Shi
,
W. T.
,
Chatterjee
,
D.
, and
Forsberg
,
F.
(
2005
). “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
,
539
550
.
58.
Segers
,
T.
,
de Jong
,
N.
, and
Versluis
,
M.
(
2016
). “
Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments
,”
J. Acoust. Soc. Am.
140
,
2506
2517
.
59.
Shampine
,
L. F.
(
2008
). “
Vectorized adaptive quadrature in MATLAB
,”
J. Comput. Appl. Math.
211
,
131
140
.
60.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
(
1997
). “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput.
18
,
1
22
.
61.
Shima
,
A.
, and
Tsujino
,
T.
(
1980
). “
The behavior of bubbles in a carreau model fluid
,”
Rep. Inst. High Speed Mech., Tohoku Univ
42
,
43
58
.
62.
Skalak
,
R.
,
Keller
,
S. R.
, and
Secomb
,
T. W.
(
1981
). “
ASME centennial historical perspective paper: Mechanics of blood flow
,”
J. Biomech. Eng.
103
,
102
115
.
63.
Sousa
,
P.
,
Carneiro
,
J.
,
Vaz
,
R.
,
Cerejo
,
A.
,
Pinho
,
F.
,
Alves
,
M.
, and
Oliveira
,
M.
(
2013
). “
Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear
,”
Biorheology
50
,
269
282
.
64.
Tanasawa
,
I.
, and
Yang
,
W. J.
(
1970
). “
Dynamic behavior of a gas bubble in viscoelastic liquids
,”
J. Appl. Phys.
41
,
4526
4531
.
65.
ter Haar
,
G.
(
2010
). “
Ultrasound bioeffects and safety
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
224
,
363
373
.
66.
Thurston
,
G.
(
1972
). “
Viscoelasticity of human blood
,”
Biophys. J.
12
,
1205
1217
.
67.
Vancraeynest
,
D.
,
Havaux
,
X.
,
Pouleur
,
A.-C.
,
Pasquet
,
A.
,
Gerber
,
B.
,
Beauloye
,
C.
,
Rafter
,
P.
,
Bertrand
,
L.
, and
Vanoverschelde
,
J.-L. J.
(
2006
). “
Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destuction
,”
Eur. Heart J.
27
,
237
245
.
68.
Varchanis
,
S.
,
Dimakopoulos
,
Y.
,
Wagner
,
C.
, and
Tsamopoulos
,
J.
(
2018
). “
How viscoelastic is human blood plasma?
,”
Soft Matter
14
,
4238
4251
.
69.
Warnez
,
M. T.
, and
Johnsen
,
E.
(
2015
). “
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
,”
Phys. Fluids
27
,
063103
.
70.
Yang
,
J.
,
Cramer
,
H. C.
, and
Franck
,
C.
(
2020
). “
Extracting non-linear viscoelastic material properties from violently-collapsing cavitation bubbles
,”
Extrem. Mech. Lett.
39
,
100839
.
71.
Yang
,
X.
, and
Church
,
C. C.
(
2005
). “
A model for the dynamics of gas bubbles in soft tissue
,”
J. Acoust. Soc. Am.
118
,
3595
3606
.
72.
Zilonova
,
E.
,
Solovchuk
,
M.
, and
Sheu
,
T.
(
2019
). “
Simulation of cavitation enhanced temperature elevation in a soft tissue during high-intensity focused ultrasound thermal therapy
,”
Ultrason. Sonochem.
53
,
11
24
.
You do not currently have access to this content.